Skip to main content

Abstract

Decubitus ulcers are the end result of an inadequate nutrient blood supply to the tissues. In discussing the pathophysiology of these lesions, it is important to distinguish between the cause, which is usually pressure on the skin, usually over bony prominences, and other factors that contribute to non-healing once the ulcer has formed. Numerous factors have been postulated to be important in the causation of decubitus ulcers (Table 1), and those factors that lead to a delay in healing have also been the subject of a number of studies. Factors that occlude capillary flow and those that delay healing overlap, of course, to some extent, but the pathophysiology of decubitus ulcers is usually blamed correctly on occlusion of capillary flow by pressures greater than mean capillary pressure (25 mmHg), along with shearing forces, infection, and a lack of cutaneous sensation [2–9]. Repetitive injury and prolonged pressure are especially important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ryan TJ (1993) Wound healing in the developing world. Dermatol Clin 11:791–799

    PubMed  CAS  Google Scholar 

  2. Groth KE (1942) Klinische Beobachtungen und exerimentelle Studien über die Entstehung des Dekubitus. Acta Chir Scand 87 [Suppl 77]:1

    Google Scholar 

  3. Daniel RK, Hall EJ, Macleod MK (1979) Pressure sores — a reappraisal. Ann Plast Surg 3:53–63

    PubMed  CAS  Google Scholar 

  4. Constantian MB (1980) Aetiology: gross effects of pressure. In: Constantian MB (ed) Pressure ulcers: principles and techniques of management. Little Brown, Boston, pp 15–24

    Google Scholar 

  5. Kosiak M (1959) Aetiology and pathology of ischaemic ulcers. Arch Phys Med 40:62

    PubMed  CAS  Google Scholar 

  6. Dinsdale SM (1973) Decubitus ulcers in swine: light and electron microscopy study of pathogenesis. Arch Phys Med Rehabil 54:51–59

    PubMed  CAS  Google Scholar 

  7. Barton AA (1976) The pathogenesis of skin wounds due to pressure. In: Kenedi RM, Cowden JM, Scales JT (eds) Bedsore biomechanics University Park Press, Baltimore, pp 55–62

    Google Scholar 

  8. Larsen B, Holstein P, Lassen NA (1979) On the pathogenesis of bedsores. Scand J Plast Reconstr Surg 13:347–350

    Article  PubMed  CAS  Google Scholar 

  9. Manchot C (1889) Die Hautarterien des Menschlichen Körpers. Vogel, Leipzig

    Google Scholar 

  10. Daniel RK, Kerrigan CL (1979) Skin flaps: an anatomical and hemodynamic approach. Clin Plast Surg 6:181–200

    PubMed  CAS  Google Scholar 

  11. Marinov G, Tzvetkova TZ (1976) About the microvascularization of the inferior limb skin in the cast of obliterating diseases. Folio Morphol 25:209

    Google Scholar 

  12. Marinov G, Tzvetkova TZ (1976) Age-related differentiation in the local peculiarities of the terminal vascular bed of the lower limb skin. Vert Anat Ges 71:689

    Google Scholar 

  13. Fagrell B (1977) The skin microcirculation and pathogenesis of ischemic necrosis and gangrene. Scand J Lab Clin Invest 37:473–476

    Article  CAS  Google Scholar 

  14. Ryan TJ (1975) The lymphatics of the skin. In: Jarrett A (ed) Physiology and pathophysiology of the skin, vol 5. Academic, London

    Google Scholar 

  15. Ryan TJ (1995) Exchange and the mechanical properties of the skin; oncotic and hydrostatic forces controlled by blood supply and lymphatic drainage. Wound Repair Regen 3:258–264

    Article  PubMed  CAS  Google Scholar 

  16. Takeda T, Koyama T, Izawa Y, Makita T, Nakamura N (1992) Effects of malnutrition on development of experimental pressure sores. J Dermatol (Tokyo) 19:602–609

    PubMed  CAS  Google Scholar 

  17. Telek G, Sinclair R, Ryan TJ, Cherry GW, Arnold F (1994) Do lymphocyte products contribute to wound failure? (Abstract) Wound Repair Regen 2:226

    Google Scholar 

  18. Bader DL, Barnhill RL, Ryan TJ (1986) Effect of externally applied skin surface forces on tissue vasculature. Arch Phys Med Rehabil 67:807–811

    PubMed  CAS  Google Scholar 

  19. Gniadecka M, Gniadecki R, Serup J, Søndergaard J (1994) Skin mechanical properties present adaptation to man’s upright position: in vitro studies of young and aged individuals. Acta Derm Venereol (Stockh) 74:188–190

    PubMed  CAS  Google Scholar 

  20. Reddy NP (1990) Effects of mechanical stresses on lymph and interstitial fluid flows. In: Bader DL (ed) Pressure sores — clinical practice and scientific approach. Macmillan Scientific and Medical, London

    Google Scholar 

  21. Yager DR, Chen S, Diegelmann RF, Cohen IK (1995) Human pressure ulcers: levels of α2-macroglobulin is inversely related to the ability to degrade exogenous peptide growth factors (abstract). Wound Repair Regen 3:108

    Google Scholar 

  22. Selye H (1967) Ischaemic necrosis; prevention by stress. Science 156:1262

    Article  PubMed  CAS  Google Scholar 

  23. Palmer B (1972) The influence of stress on the survival of experimental skin flaps. Scand J Plast Reconstr Surg 6:110–113

    Article  PubMed  CAS  Google Scholar 

  24. Palmer B (1970) Sympathetic denervation and reinnervation of cutaneous blood vessels following surgery. Scand J Plast Reconstr Surg 4:93–99

    Article  PubMed  CAS  Google Scholar 

  25. Myers M, Cherry G (1968) Enhancement of survival in devascularised pedicles by the use of phenoxybenzamine. Plast Reconstr Surg 41:254–260

    Article  PubMed  CAS  Google Scholar 

  26. Barron J, Veall N, Arnott DG (1951) The measurement of the local clearance of radioactive sodium in tubed skin pedicles. Br J Plast Surg 4:16–27

    Article  PubMed  CAS  Google Scholar 

  27. Liebow A A (1963) Collateral circulation. Handbook of physiology: circulation II. American Physiological Society, Bethesda, p 1257

    Google Scholar 

  28. Trendelenberg U (1963) Supersensitivity and subsensitivity of sympathetic amines. Pharmacol Rev 15:225

    Google Scholar 

  29. Malfros T, Sachs C (1965) Direct studies on the disappearance of the transmitter and the changes in the uptake storage mechanisms of degenerating adrenergic nerves. Acta Physiol Scand 64:211–223

    Article  Google Scholar 

  30. Willms-Kretschmer K, Majno G (1969) Ischemia of the skin — electron microscopic study of vascular injury. Am J Pathol 54:327–353

    PubMed  CAS  Google Scholar 

  31. Milton SH (1972) Experimental studies on island flaps. II. Ischaemia and delay. Plast Reconstr Surg 49:444–447

    Article  PubMed  CAS  Google Scholar 

  32. Milton SH (1969) The effects of “delay” on the survival of experimental pedicled skin flaps. Br J Plast Reconst Surg 22:244–252

    CAS  Google Scholar 

  33. Myers M, Cherry G (1971) Differences in the delay phenomenon in the rabbit, rat and pig. Plast Reconstr Surg 47:73–78

    Article  PubMed  CAS  Google Scholar 

  34. Burton AC (1939) The range and variation of the blood flow in the human fingers. Am J Physiol 127:437–443

    Google Scholar 

  35. Feigl E (1974) The arterial system. In: Ruch T, Patton H (eds) Physiology and biophysics. Saunders, Philadelphia, pp 117–128

    Google Scholar 

  36. Gordon L, Buncke JJ, Townsend JJ (1976) Histological changes in skeletal muscle after temporary independent occlusion of arterial and venous supply. Plast Reconstr Surg 57:133–143

    Article  Google Scholar 

  37. Cherry G, Faller R, Manders E, Grabb WC (1980) Functional microcirculatory changes after flap elevation — possible factor in flap failure. Plast Surg Forum 3:206

    Google Scholar 

  38. Teh BT (1979) Why do skin grafts fail? Plast Reconstr Surg 63:323–332

    Article  PubMed  CAS  Google Scholar 

  39. Cherry GW, Ryan TJ, Ellis J (1974) Decreased fibrolysis in reperfused ischemic tissue. Thromb Diathes Haemorrh 32:559–664

    Google Scholar 

  40. Kienermann K (1977) Prophylaxis against deep vein thrombosis. Lancet I:970

    Google Scholar 

  41. Larsson J, Risberg B (1977) Ischemia-induced changes in tissue fibrinolysis in human legs. Biblio Anat 15:556

    Google Scholar 

  42. Ryan TJ, Nighioka K, Dawber RPR (1971) Epithelial-endothelial interactions in the control of inflammation through fibrinolysis. Br J Dermatol 84:501–515

    Article  PubMed  CAS  Google Scholar 

  43. Kanan MW, Ryan TJ (1976) The localization of granulomatous diseases and vasculitis in the nasal mucosa. Maj Probl Dermatol 7:195

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cherry, G.W., Ryan, T.J. (1997). Pathophysiology. In: Parish, L.C., Witkowski, J.A., Crissey, J.T. (eds) The Decubitus Ulcer in Clinical Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60509-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60509-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64436-8

  • Online ISBN: 978-3-642-60509-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics