Advertisement

TLS-CHOP and the Role of RNA-Binding Proteins in Oncogenic Transformation

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 220)

Abstract

Many of the genes found to be altered in cancer cells encode proteins with regulatory effects on the pattern of gene expression. Some, like growth factor receptors and adapter molecules, do so indirectly by interfering with signaling pathways that eventually converge on a nuclear target. Others are more directly associated with regulation of gene expressions, being either DNA-binding transcription factors or proximate regulators of transcription factor function.

Keywords

Synovial Sarcoma Transcriptional Machinery Myxoid Liposarcoma Desmoplastic Small Round Cell Tumor Transcriptional Activation Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åman P, Ron D, Mandahl N, Fioretos T, Heim S, Arhenden K, Willen H, Rydholm A, Mitelman F (1992) Rearrangement of the transcription factor gene CHOPin myxoid liposarcomas with t(12; 160(q13;p11)). Genes Chrom Cancer 5: 271 – 277CrossRefGoogle Scholar
  2. Bailly RA, Bousselut R, Zucman J, Cormier F, Delattre O, Roussel M, Thomas G, Ghysdeal J (1994) DNA-binding and transcriptional activation properties of the EWS-Fli1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol 14: 3230 – 3241PubMedGoogle Scholar
  3. Barberis A, Pearlberg J, Simkovich N, Farrell S, Reinagel P, Bamdad C, Sigal G, Ptashne M (1995) Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81: 359 – 368PubMedCrossRefGoogle Scholar
  4. Barone MV, Crozat AY, Tabaee A, Philipson L, Ron D (1994) CHOP (GADD153) and its oncogenic variant, TLS-CHOP, differ in their ability to induce G1/S arrest. Genes Dev 8: 453 – 464PubMedCrossRefGoogle Scholar
  5. Batchvarova N, Wang X-Z, Ron D (1995) Inhibition of adipogenesis by the stress-induced protein CHOP (GADD153) EMBO J 14: 4654 – 4661PubMedGoogle Scholar
  6. Berkhout B, Silverman RH, Jeang K-T (1989) Tat transactivates the human immunodeficiency virus through a nascent RNA target. Cell 59: 273 – 282PubMedCrossRefGoogle Scholar
  7. Bishop JM (1987) The molecular genetics of cancer. Science 235: 305 – 311PubMedCrossRefGoogle Scholar
  8. Buck M, Turler H, Chojkier M (1994) LAP (NF-IL-6), a tissue-specific transcriptional activator, is an inhibitor of hepatoma cell proliferation. EMBO J 13: 851 – 860PubMedGoogle Scholar
  9. Cao Z, Umek RM, McKnight SL (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5: 1538 – 1552PubMedCrossRefGoogle Scholar
  10. Carlson SG, Fawcett TW, Bartlett JD, Bernier M, Holbrook NJ (1993) Regulation of the C/EBP-related gene, gadd153, by glucose deprivation. Mol Cell Biol 13: 4736 – 4744PubMedGoogle Scholar
  11. Chatterjee S, Struhl K (1995) Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 374: 820 – 822PubMedCrossRefGoogle Scholar
  12. Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM-L, Gusterson BA, Cooper CS (1994) Identification of novel genes, SYT and SSX, involved in the t(X;18)(P11.2;q11.2) translocation found in human synovial sarcoma. Nat Gen 7: 502 – 508CrossRefGoogle Scholar
  13. Crozat AY, Åman P, Mandahl N, Ron D (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma with t(12; 16)(q 13;p 11). Nature 363: 640 – 644PubMedCrossRefGoogle Scholar
  14. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, deJong P, Rouleau G, Aurias A, Thomas G (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumors. Nature 359: 162 – 165PubMedCrossRefGoogle Scholar
  15. Fornace AJ, Neibert DW, Hollander MC, Luethy JD, Papathanasiou M, Fragoli J, Holbrook NJ (1989) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol 9: 4196 – 4203PubMedGoogle Scholar
  16. Freytag SO, Paielli DL, Gilbert JD (1994) Ectopic expression of the CCAAT/enhancer-binding protein α promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev 8: 1654 – 1663PubMedCrossRefGoogle Scholar
  17. Immanuel D, Zinszner H, Ron D (1995) Association of SARFH (sarcoma associated RNA-binding fly homologue), with regions of chromatin transcribed by rNA polymerase II. Mol Cell Biol 15: 4562 – 4571PubMedGoogle Scholar
  18. Klages N, Strubin M (1995) Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature 374: 822 – 823PubMedCrossRefGoogle Scholar
  19. Ladanyi M, Gerald W (1994) Fusion of the EWSand WTIgenes in the desmoplastic small round cell tumor. Cancer Res 54: 2837 – 2840PubMedGoogle Scholar
  20. Landschulz WH, Johnson PF, McKnight SL (1989) The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 243: 1681 – 1688PubMedCrossRefGoogle Scholar
  21. Lessnick S, Braun B, Denny C, May W (1995) Multiple domains mediate transformation by the Ewing’s sarcoma EWS/FLI-1 fusion gene. Oncogene 10: 423 – 431PubMedGoogle Scholar
  22. Lin F-T, Lane M (1994) CCAAT/enhancer binding protein α is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci USA 91: 8757 – 8761PubMedCrossRefGoogle Scholar
  23. Lin F-T, Lane MD (1992) Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. Genes Dev 6: 533 – 544PubMedCrossRefGoogle Scholar
  24. Ma J, Ptashne M (1987) A new class of yeast transcriptional activators. Cell 51: 113 – 119PubMedCrossRefGoogle Scholar
  25. Mao X, Miesfeldt S, Yang H, Leiden J, Thompson C (1994) The FLI-1 and chimeric EWS-FLI-1 oncoproteins display similar DNA binding specificties. J Biol Chem 269: 18216 – 18222PubMedGoogle Scholar
  26. Marten NW, Burke EJ, Hayden JM, Straus DS (1994) Effect of amino acid limitation on the expression of 19 genes in rat hepatoma cells. FASEB J 8: 538 – 544PubMedGoogle Scholar
  27. Matunis EL, Matunis MJ, Dreyfuss G (1992) Drosophila heterogenous nuclear ribonucleoproteins. J Cell Biol 116: 257 – 269PubMedCrossRefGoogle Scholar
  28. May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, Zucman J, Thomas G, Denny CT (1993a) Ewing sarcoma 11;22 tranlocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLU for transformation. Proc Natl Acad Sci USA 90: 5752 – 5756CrossRefGoogle Scholar
  29. May WA, Lessnick SL, Braun BS, Klemsz M, Lewis BC, Lunsford LB, Hromas R, Denny CT (1993b) The Ewing’s sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol 13: 7393 – 7398Google Scholar
  30. McKnight SL, Lane MD, Gluecksohn-Waelsch S (1989) Is CCAAT/enhancer binding protein a central regulator of energy metabolism? Genes Dev 3: 2021 – 2024PubMedCrossRefGoogle Scholar
  31. Metz R, Ziff E (1991) cAMP stimulates the C/EBP-related transcription factor rNFIL-6 to trans-locate to the nucleus and induce c-fos transcription. Genes Dev 5: 1754–1766Google Scholar
  32. Ohno T, Ouchida M, Lee L, Gatalica Z, Rao V, Reddy E (1994) The EWS gene, involved in Ewing family of tumors, malignant melanoma of soft parts and desmoplastic small round tumors, codes for an RNA binding proteins with novel regulatory domains. Oncogene 9: 3087 – 3097PubMedGoogle Scholar
  33. Park JS, Luethy JD, Wang MG, Fragnolli J, Fornace AJ, McBride OW, Holbrook NJ (1992) Isolation, characterization and chromosomal localization of the human GADD153 gene. Gene 116: 259 – 267PubMedCrossRefGoogle Scholar
  34. Poli V, Mancini FP, Cortese R (1990) IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. Cell 63: 643 – 653PubMedCrossRefGoogle Scholar
  35. Prasad D, Ouchida M, Lee L, Vn R, Reddy E (1994) TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain. Oncogene 9: 3717 – 3729PubMedGoogle Scholar
  36. Price B, Calderwood S (1992) Gadd 45 and Gadd 153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of glucose-regulated proteins. Cancer Res 52: 3814 – 3817PubMedGoogle Scholar
  37. Rabbitts TH (1994) Chromosomal translocations in human cancer. Nature 372: 143 – 149PubMedCrossRefGoogle Scholar
  38. Rabbits TH, Forster A, Larson R, Nathan P (1993) Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Gen 4: 175 – 180CrossRefGoogle Scholar
  39. Ron D (1994) Inducible growth arrest: New mechanistic insights. Proc Natl Acad Sci USA 91: 1985 – 1986PubMedCrossRefGoogle Scholar
  40. Ron D, Habener JF (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 6: 439 – 453PubMedCrossRefGoogle Scholar
  41. Samuelsson L, Strömberg K, Vikman K, Bjursell G, Enerbäck S (1991) The CCAAT/enhancer binding protein and its role in adipocyte differentiation: evidence for direct involvement in terminal adipocyte development. EMBO J 10: 3787 – 3793PubMedGoogle Scholar
  42. Selby MJ, Peterlin BM (1990) Trans-activation by TAT via a heterologous RNA binding protein. Cell 62: 769 – 776PubMedCrossRefGoogle Scholar
  43. Sreekantiaiah S, Karakousis CP, Leong SPL, Sandberg AA (1992) Cytogenetic findings in liposarcoma correlate with histopathologic subtypes. Cancer 69: 2484 – 2495CrossRefGoogle Scholar
  44. Stolow D, Haynes S (1995) Cabeza, a Drosophila gene encoding a novel RNA binding protein, shares homology with EWS and TLS, two genes involved in human sarcoma formation. Nucleic Acids Res 23: 835 – 843PubMedCrossRefGoogle Scholar
  45. Turc-Carel C, Limon J, Dal Cin P, Rao U, Karakousis C, Sandberg AA (1986) Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcoma. Cancer Genet Cytogenet 23: 291 – 299PubMedCrossRefGoogle Scholar
  46. Ubeda M, Zinszner H, Wang X-Z, Wu I, Habener J, Ron D (1995) Stress-induced binding of transcription factor CHOP to a novel DNA-control element. Mol Cell Biol 16: 1479 – 1489Google Scholar
  47. Varmus HE (1984) The molecular genetics of cellular oncogenes. Annu Rev Genet 18: 553 – 612PubMedCrossRefGoogle Scholar
  48. Wegner M, Cao Z, Rosenfeld M (1991) Calcium-regulated phosphorylation within the leucine zipper of C/EBPß. Science 256: 370 – 373CrossRefGoogle Scholar
  49. Williams SC, Cantwell CA, Johnson PF (1991) A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Genes Dev 5: 1553 – 1567PubMedCrossRefGoogle Scholar
  50. Zhan Q, Liebermann DA, Alamo I, Hollander MC, Ron D, Kohn KW, Hoffman B, Fornace AJ (1994) The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that cooperatively suppress cell growth. Mol Cell Biol 14: 2361 – 2371PubMedGoogle Scholar
  51. Zinszner H, Albalat R, Ron D (1994) A novel effector domain from the RNA-binding proteins TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 8: 2513 – 2526PubMedCrossRefGoogle Scholar
  52. Zucman J, Delattre O, Desmaze C, Epstein AL, Stenman G, Spelman F, Fletchers CDM, Aurias A, Thomas G (1993a) EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Gen 4: 341 – 345CrossRefGoogle Scholar
  53. Zucman J, Melot T, Desmaze C, Ghysdeal J, Plougastel B, Peter M, Zucker JM, Triche TT, Sheer D, Turc-Carel C, Ambros P, Combaret V, Lenoir G, Aurias A, Thomas G, Delattre O (1993b) Combinatorial generation of variable fusion proteins in the Ewing family of tumors. EMBO J 12: 4481 – 4487Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • D. Ron
    • 1
  1. 1.Skirball Institute of Biomolecular Medicine, Departments of Medicine and Cell Biology and the Kaplan Cancer CenterNew York University Medical CenterNew YorkUSA

Personalised recommendations