Characterisation of the PML/RARα Rearrangement Associated with t(15;17) Acute Promyelocytic Leukaemia

  • D. Grimwade
  • E. Solomon
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 220)


Acute promyelocytic leukaemia (APL; FAB AML M3, Bennett et al. 1976) represents a unique example of a disease in which a successful treatment approach, in the form of all-trans retinoic acid (ATRA), has been developed that directly addresses and overcomes the causative molecular abnormality. For over a decade, retinoids have been noted to possess therapeutic activity which is virtually specific to the acute promyelocytic form of acute myeloid leukaemia (AML) (Breitman et al. 1981). Subsequent clinical trials have shown that ATRA can achieve remission rates of over 90% in APL (Huang et al. 1988; Castaigne et al. 1990; CHOMIENNE et al. 1990), representing an apparent significant improvement on results obtained with conventional chemotherapy; indeed a number of patients in these studies were chemoresistant or treated in relapse. Parallel in vitro studies have demonstrated that remission is achieved by terminal differentiation of the leukaemic clone rather than by a cytotoxic effect (Huang et al. 1988; Castaigne et al. 1990; Chomienne et al. 1990). This has been confirmed using clonal analysis of APL blasts and peripheral blood neutrophils following ATRA therapy (ELLIOTT et al. 1992).


Retinoic Acid Acute Promyelocytic Leukemia Minimal Residual Disease Retinoic Acid Receptor Nuclear Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcalay M, Zangrilli D, Pandolfi PP, Longo L, Mencarelli A, Giacomucci A, Rocchi M, Biondi A, Rambaldi A, Lo Coco F, Divedo D, Donti E, Grignani F, Pelicci PG (1991) Translocation break-point of acute promyelocytic leukemia lies within the retinoic acid receptor α locus. Proc Natl Acad Sci USA 88: 1977 – 1981PubMedGoogle Scholar
  2. Alcalay M, Zangrilli D, Fagioli M, Pandolfi PP, Mencarelli A, Lo Coco F, Biondi A, Grignani F, Pelicci PG (1992) Expression pattern of the RARα-PML fusion gene in acute promyelocytic leukemia. Proc Natl Acad Sci USA 89: 4840 – 4844PubMedGoogle Scholar
  3. Andersen B, Rosenfeld MG (1995) New wrinkles in retinoids. Nature 374: 118 – 119PubMedGoogle Scholar
  4. Au-Fliegner M, Helmer E, Casanova J, Raaka BM, Samuels HH (1993) The conserved ninth C-terminal heptad in thyroid hormone and retinoic acid receptors mediates diverse responses by affecting het-erodimer but not homodimer formation. Mol Cell Biol 13: 5725 – 5737PubMedGoogle Scholar
  5. Avvisati G, Ten Cate JW, Mandelli F (1992) Acute promyelocytic leukaemia. Br J Haematol 81: 315 – 320PubMedGoogle Scholar
  6. Avvisati G, Baccarani M, Ferrara F, Lazzarino M, Resegotti L, Mandelli F (1994) AIDA protocol (all-transretinoic acid + idarubicin) in the treatment of newly diagnosed acute promyelocytic leukaemia: a pilot study of the Italian cooperative group GIMEMA. Blood 84 (Suppl 1 ): 380aGoogle Scholar
  7. Bain BJ (1990) Leukaemia diagnosis. A guide to the FAB classification. Gower Medical, London, p 14Google Scholar
  8. Barettino D, Bugge TH, Bartunek P, Vivanco Ruiz MdM, Sonntag-Buck V, Beug H, Zenke M, Stunnenberg HG (1993) Unliganded T3R, but not its oncogenic variant v-erbA, suppresses RAR dependent transactivation by titrating out RXR. EMBO J 12: 1343 – 1354PubMedGoogle Scholar
  9. Beato M (1989) Gene regulation by steroid hormones. Cell 56: 335 – 344PubMedGoogle Scholar
  10. Bennett J, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick NR, Sultan C (1976) [French-American-British (FAB) cooperative group]. Proposals for the classification of the acute leukaemias. Br J Haematol 33: 451–458Google Scholar
  11. Berger R, Le Coniat M, Derré J, Vecchione D, Jonveaux P (1991) Cytogenetic studies in acute promyelocytic leukemia: a survey of secondary chromosomal abnormalities. Genes Chromosom Cancer 3: 332 – 337PubMedGoogle Scholar
  12. Bhavnani M, Al Azzawi S, Liu Yin JA, Lucas GS (1994) Therapy-related acute promyelocytic leukaemia. Br J Haematol 86: 231 – 232PubMedGoogle Scholar
  13. Biondi A, Rambaldi A, Pandolfi PP, Rossi V, Giudici G, Alcalay M, Lo Coco F, Diverio D, Pogliani EM, Lanzi EM, Mandelli F, Masera G, Barbui T, Pelicci PG (1992) Molecular monitoring of the myl/ retinoic acid receptor-α fusion gene in acute promyelocytic leukemia by polymerase chain reaction. Blood 80: 492 – 497PubMedGoogle Scholar
  14. Biondi A, Luciano A, Bassan R, Mininni D, Specchia G, Lanzi E, Castagna S, Cantu-Rajnoldi A, Liso V, Masera G, Barbui T, Rambaldi A (1993) CD2 expression correlates with microgranular acute promyelocytic leukemia (M3V) and not with PML gene breakpoint. Blood 82: 113aGoogle Scholar
  15. Biondi A, Rovelli A, Cantu-Rajnoldi A, Fenu S, Basso G, Luciano A, Rondelli R, Mandelli F, Masera G, Testi AM (1994) Acute promyelocytic leukemia in children: experience of the Italian pediatric hematology and oncology group (AIEOP). Leukemia 8 (Suppl): s66 – s70PubMedGoogle Scholar
  16. Biondi A, Luciano A, Bassan R, Mininni D, Specchia G, Lanzi E, Castagna S, Cantu-Rajnoldi A, Liso V, Masera G, Barbui T, Rambaldi A (1995) CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML breakpoint. Leukemia 9: 1461 – 1466PubMedGoogle Scholar
  17. Boddy MN, Hoew K, Etkin LD, Solomon E. Freemont PS (1996) PIC 1, a novel ubiguitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acuted promyclockytic leukaemia. Oncogene (in press)Google Scholar
  18. Borden KLB, Boddy MN, Lally J, O’Reilly NJ, Martin S, Howe K, Solomon E, Freemont PS (1995) The solution structure of the RING finger domain from the acute promyelocytic proto-oncoprotein PML. EMBO J 14: 1532 – 1541PubMedGoogle Scholar
  19. Borden KLB, Lally JM, Martin SR, O’Reilly NJ, Solomon E, Freemont PS (1996) In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc Natl Acad Sci USA 93: 1601 – 1606PubMedGoogle Scholar
  20. Borrow J, Goddard AD, Sheer D, Solomon E (1990) Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249: 1577 – 1580PubMedGoogle Scholar
  21. Borrow J, Goddard AD, Gibbons B, Katz F, Swirsky D, Fioretos T, Dube I, Winfield DA, Kingston J, Hagemeijer A, Rees JKH, Lister TA, Solomon E (1992) Diagnosis of acute promyelocytic leukaemia by RT-PCR: detection of PML-RARA and RARA-PML fusion transcripts. Br J Haematol 82: 529 – 540PubMedGoogle Scholar
  22. Borrow J, Solomon E (1992) Molecular analysis of the t(15; 17) translocation in acute promyelocytic leukaemia. Baillieres Clin Haematol 5: 833 – 856PubMedGoogle Scholar
  23. Borrow J, Shipley J, Howe K, Kiely F, Goddard A, Sheer D, Srivastava A, Antony AC, Fioretos T, Mitelman F, Solomon E (1994) Molecular analysis of simple variant translocations in acute promyelocytic leukaemia. Genes Chromosom Cancer 9: 234 – 243PubMedGoogle Scholar
  24. Brand NJ, Petkovich M, Chambon P (1990) Characterization of a functional promoter for the human retinoic acid receptor-alpha (hRAR-α). Nucleic Acids Res 18: 6799 – 6806PubMedGoogle Scholar
  25. Breitman TR, Collins SJ, Keene BR (1981) Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood 57: 1000 – 1004PubMedGoogle Scholar
  26. Brockes J (1990) Reading the retinoid signals. Nature 345: 766 – 768PubMedGoogle Scholar
  27. Burnett AK (1994) Karyotypically defined risk groups in acute myeloid leukaemia. Leuk Res 18: 889–890Google Scholar
  28. Carvalho T, Seeler J-S, Ohman K, Jordan P, Pettersson U, Akusjärvi G, Carmo-Fonseca M, Dejean A (1995) Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J cell Biol 131: 45 – 56Google Scholar
  29. Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L (1990) All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 76: 1704 – 1709PubMedGoogle Scholar
  30. Castoldi GL, Liso V, Specchia G, Tomasi P (1994) Acute promyelocytic leukemia: morphological aspects. Leukemia 8 (Suppl): s27 – s32PubMedGoogle Scholar
  31. Chelbi-Alix MK, Pelicano L, Quignon F, Koken MHM, Venturini L, Stadler M, Pavlovic J, Degos L, and de Thé H (1995) Induction of the PML protein by interferons in normal and APL cells. Leukemia 9: 2027 – 2033PubMedGoogle Scholar
  32. Chen S-J, Zelent A, Tong J-H, Yu H-Q, Wang Z-Y, Derré J, Berger R, Waxman S, Chen Z (1993a) Rearrangements of the retinoic acid receptor alpha and promyelocytic leukaemia zinc finger genes resulting from t(11;17) (q23;q21) in a patient with acute promyelocytic leukaemia. J Clin Invest 91: 2260 – 2267Google Scholar
  33. Chen Z, Brand NJ, Chen A, Chen S-J, Tong J-H, Wang Z-Y, Waxman S, Zelent A (1993b) Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11; 17) translocation associated with acute promyelocytic leukaemia. EMBO J 12: 1161 – 1167Google Scholar
  34. Chen Z, Guidez F, Rousselot P, Agadir A, Chen S-J, Wang Z-Y, Degos L, Zelent A, Waxman S, Chomienne C (1994a) PLZF-RARα fusion proteins generated from the variant t(11;17) (q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc Natl Acad Sci USA 91: 1178 – 1182Google Scholar
  35. Chen Z, Morgan R, Stone JF, Sandberg AA (1994b) Identification of complex t(15; 17) in APL by FISH. Cancer Genet Cytogenet 72: 73 – 74Google Scholar
  36. Chomienne C, Ballerini P, Balitrand N, Daniel MT, Fenaux P, Castaigne S, Degos L (1990) All-trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies: structure-function relationship. Blood 76: 1710 – 1717Google Scholar
  37. Claxton DF, Reading CL, Nagarajan L, Tsujimoto Y, Andersson BS, Estey E, Cork A, Huh YO, Trujillo J, Diesseroth AB (1992) Correlation of CD2 expression with PML gene breakpoints in patients with acute promyelocytic leukemia. Blood 80: 582 – 586PubMedGoogle Scholar
  38. Collins SJ, Robertson KA, Mueller L (1990) Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukaemia cells is mediated directly through the retinoic acid receptor (RAR-α). Mol Cell Biol 10: 2154 – 2163PubMedGoogle Scholar
  39. Damm K, Thompson CC, Evans RM (1989) Protein encoded by v-erb Afunctions as a thyroid hormone receptor antagonist. Nature 339: 593 – 597PubMedGoogle Scholar
  40. Daniel MT, Koken M, Romagné O, Barbey S, Bazarbachi A, Stadler M, Guillemin MC, Degos L, Chomienne C, de Thé H (1993) PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 82: 1858 – 1867PubMedGoogle Scholar
  41. Danielan PS, White R, Lees JA, Parker MG (1992) Identification of a conserved region required for hormone-dependent transcriptional activation by steroid hormone receptors. EMBO J 11: 1025 – 1033Google Scholar
  42. de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A (1990) The t(15; 17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 347: 558 – 561PubMedGoogle Scholar
  43. de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991) The PML-RARα fusion Mrna generated by the t(15; 17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66: 675 – 684PubMedGoogle Scholar
  44. Di Noto R, Schiavone EM, Ferrara F, Manzo C, Lo Pardo C, Del Vecchio L (1994) Expression and ATRA-driven modulation of adhesion molecules in acute promyelocytic leukemia. Leukemia 8 (Suppl): s71 – s76PubMedGoogle Scholar
  45. Diverio D, Pandolfi PP, Biondi A, Avvisati G, Petti MC, Mandelli F, Pelicci PG, Lo Coco F (1993) Absence of reverse transcription-polymerase chain reaction detectable residual disease in patients with acute promyelocytic leukemia in long-term remission. Blood 82: 3556 – 3559PubMedGoogle Scholar
  46. Don Chen J, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454 – 457Google Scholar
  47. Dong S, Geng J-P, Tong J-H, Wu Y, Cai J-R, Sun G-L, Chen S-R, Wang Z-Y, Larsen C-J, Berger R, Chen S-J, Chen Z (1993) Breakpoint clusters of the PML gene in acute promyelocytic leukemia: Primary structure of the reciprocal products of the PML-RARA gene in a patient with t(15;17). Genes, Chromosom Cancer 6: 133 – 139Google Scholar
  48. Doucas V, Brockes JP, Yaniv M, de Thé H, Dejean A (1993) The PML-retinoic acid receptor α translocation converts the recptor from an inhibitor to a retinoic acid-dependent activator of transcription factor AP-1. Proc Natl Acad Sci USA 90: 9345 – 9349PubMedGoogle Scholar
  49. Doucas V, Ishov AM, Romo A, Juguilon H, Weitzman MD, Evans RM, Maul GG (1996) Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev 10: 196 – 207PubMedGoogle Scholar
  50. Dulic V, Riezman H (1989) Characterization of the END 1gene required for vacuole biogenesis and gluconeogenic growth of budding yeast. EMBO J 8: 1349 – 1359PubMedGoogle Scholar
  51. Durand B, Saunders M, Gaudon C, Roy B, Losson R, Chambon P (1994) Activation function 2 (AF-2) of RAR and RXR: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J 13: 5370 – 5382PubMedGoogle Scholar
  52. Dyck JA, Maul GG, Miller WH, Chen JD, Kakizuka A, Evans RM (1994) A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76: 333 – 343PubMedGoogle Scholar
  53. Elliott S, Taylor K, White S, Rodwell R, Marlton P, Meagher D, Wiley J, Taylor D, Wright S, Timms P (1992) Proof of differentiative mode of action of all-transretinoic acid in acute promyelocytic leukemia using X linked clonal analysis. Blood 79: 1916 – 1919PubMedGoogle Scholar
  54. Everett RD, Maul GG (1994) HSV-1 IE protein Vmw11O causes redistribution of PML. EMBO J 13: 5062 – 5069PubMedGoogle Scholar
  55. Fagioli M, Alcalay M, Pandolfi PP, Venturini L, Mencarelli A, Simeone A, Acampora D, Grignani F, Pelicci PG (1992) Alternative splicing of PML transcripts predicts coexpression of several carboxy-terminally different protein isoforms. Oncogene 7: 1083 – 1091PubMedGoogle Scholar
  56. Fenaux P, Chastang C, Castaigne S, Archimbaud E, Sanz M, Link H, Guerci A, Fegueux N, Zittoun R, Stoppa AM, Travade P, Lamy T, Maloisel F, Sadoun A, San Miguel J, Veil A, Rayon C, Conde E, Fey M, Bordessoule D, Ganser A, Bowen D, Dreyfus F, Huguet F, Tilly H, Guy H, Auzanneau G, Chomienne C, Degos L (1994) Treatment of newly diagnosed acute promyelocytic leukemia (APL) with all-transretinoic acid (ATRA) followed by intensive chemotherapy (CT). Updated results of the European group. Blood 84: (Suppl): 379aGoogle Scholar
  57. Flenghi L, Fagioli M, Tomassoni L, Pileri S, Gambacorta M, Pacini R, Grignani F, Casini T, Ferrucci PF, Martelli MF, Pelicci P-G, Falini B (1995) Characterization of a new monoclonal antibody (PG-M3) directed against the aminoterminal portion of the PML gene product: immunocytochemical evidence for high expression of PML proteins on activated macrophages, endothelial cells, and epithelia. Blood 85: 1871 – 1880PubMedGoogle Scholar
  58. Forman BM, Umesono K, Chen J, Evans RM (1995) Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 81: 541 – 550PubMedGoogle Scholar
  59. Frankel SR, Eardley A, Lauwers G, Weiss M, Warrell RP (1992) The “retinoic acid syndrome” in acute promyelocytic leukemia. Ann Intern Med 117: 292 – 296PubMedGoogle Scholar
  60. Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64: 483 – 484PubMedGoogle Scholar
  61. Freemont PS (1993) The RING Finger. A novel protein sequence motif related to the zinc finger. Ann NY Acad Sci 684: 174 – 192PubMedGoogle Scholar
  62. Fukutani H, Naoe T, Ohno R, Yoshida H, Miyawaki S, Shimazaki C, Miyake T, Nakayama Y, Kobayashi H, Goto S, Takeshita A, Kobayashi S, Kato Y, Shiraishi K, Sasada M, Ohtake S, Murakami H, Kobayashi S, Endo N, Shindo H, Matsushita K, Hasegawa S, Tsuji K, Ueda Y, Tominaga N, Furuya H, Inoue Y, Takeuchi J, Morishita H, Iida H (1995) Isoforms of PML-retinoic acid receptor alpha fused transcripts affect neither clinical features of acute promyelocytic leukemia nor prognosis after treatment with all-trans retinoic acid. Leukemia 9: 1478 – 1482PubMedGoogle Scholar
  63. Gallagher RE, Li Y-P, Rao S, Paietta E, Andersen J, Etkind P, Bennett JM, Tallman MS, Wiernik PH (1995) Characterization of acute promyelocytic leukemia cases with PML-RARα break/fusion sites in PML exon 6: identification of a subgroup with decreased in vitro responsiveness to all-transretinoic acid. Blood 86: 1540 – 1547PubMedGoogle Scholar
  64. Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330: 624 – 629PubMedGoogle Scholar
  65. Goddard AD, Borrow J, Freemont PS, Solomon E (1991) Characterization of a zinc finger gene disrupted by the t(15; 17) in acute promyelocytic leukemia. Science 254: 1371 – 1374PubMedGoogle Scholar
  66. Golomb HM, Rowley JD, Vardiman JW, Testa JR, Butler A (1980) “Microgranular” acute promyelocytic leukemia: a distinct clinical, ultrastructural and cytogenetic entity. Blood 55: 253–259Google Scholar
  67. Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Alcalay M, Mencarelli A, Peschle C, Nicoletti I, Pelicci PG (1993) The acute promyelocytic leukemia-specific PML-RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74: 423 – 431PubMedGoogle Scholar
  68. Grimwade D, Howe K, Langabeer S, Burnett A, Goldstone A, Solomon E (1996a) Minimal residual disease detection in acute promyelocytic leukemia by reverse-transcriptase PCR: evaluation of PML-RARαand RARα-PML assessment in patients who ultimately relapse. Leukemia 10: 61 – 66Google Scholar
  69. Grimwade D, Howe K, Langabeer S, Burnett A, Goldstone A, Solomon E (1996a) Minimal residual disease detection in acute promyelocytic leukemia by reverse-transcriptase PCR: evaluation of PML-RARαand RARα-PML assessment in patients who ultimately relapse. Leukemia 10: 61 – 66Google Scholar
  70. Hiorns LR, Min T, Swansbury GJ, Zelent A, Dyer MJS, Catovsky D (1994) Interstitial insertion of retinoic acid receptor-α gene in acute promyelocytic leukaemia with normal chromosomes 15 and 17. Blood 83: 2946 – 2951PubMedGoogle Scholar
  71. Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Söderström M, Glass CK, Rosenfeld MG (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397 – 404PubMedGoogle Scholar
  72. Huang M-E, Ye Y-C, Chen S-R, Chai J-R, Lu J-X, Zhoa L, Gu L-J, Wang Z-Y (1988) Use of all-transretinoic acid in the treatment of acute promyelocytic leukemia. Blood 72: 567 – 572PubMedGoogle Scholar
  73. Huang W, Sun G-L, Li X-S, Cao Q, Lu Y, Jang G-S, Zhang F-Q, Chai J-R, Wang Z-Y, Waxman S, Chen Z, Chen S-J (1993) Acute promyelocytic leukemia: clinical relevance of two major PML/RARa isoforms and detection of minimal residual disease by retro-transcriptase polymerase chain reaction to detect relapse. Blood 82: 1264 – 1269PubMedGoogle Scholar
  74. Imakado S, Bickenbach JR, Bundman DS, Rothnagel JA, Attar PS, Wang X-J, Walczak VR, Wisniewski S, Pote J, Gordon JS, Heyman RA, Evans RM, Roop DR (1995) Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function. Genes Dev 9: 317 – 329PubMedGoogle Scholar
  75. Jones JS, Weber S, Prakash L (1988) The Saccharomyces cerevisiaeRAD 18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence. Nucleic Acids Res 16: 7119 – 7131PubMedGoogle Scholar
  76. Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VWS, Dmitrovsky E, Evans RM (1991) Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 66: 663 – 674PubMedGoogle Scholar
  77. Kastner P, Perez A, Lutz Y, Rochette-Egly C, Gaub M-P, Durand B, Lanotte M, Berger R, Chambon P (1992) Structure, localisation and transcriptional properties of two classes of retinoic acid receptor α fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J 11: 629 – 642PubMedGoogle Scholar
  78. Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, Vonesch J-L, Dolle P, Chambon P (1994) Genetic analysis of RXRα developmental function: convergence of RXR and RAR signalling pathways in heart and eye morphogenesis. Cell 78: 987 – 1003PubMedGoogle Scholar
  79. Kelly C, Vandriel R, Wilkinson GWG (1995) Disruption of PML-associated nuclear bodies during human cytomegalovirus infection. J Gen Virol 76: 2887 – 2893PubMedGoogle Scholar
  80. Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM (1992) Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature: 355, 446 – 449PubMedGoogle Scholar
  81. Koken MHM, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, de Jong L, Szostecki C, Calvo F, Chomienne C, Degos L, Puvion E, de Thé H (1994) The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 13: 1073 – 1083PubMedGoogle Scholar
  82. Koken MHM, Linares-Cruz G, Quignon F, Viron A, Chelbi-Alix MK, Sobczak-Thépot J, Juhlin L, Degos L, Calvo F, de Thé H (1995) The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene 10: 1315 – 1324PubMedGoogle Scholar
  83. Korioth F, Gieffers C, Maul GG, Frey J (1995) Molecular characterization of NDP52, a novel protein of the Nuclear Domain 10, which is redistributed upon virus infection and interferon treatment. J Cell Biol 130: 1–13Google Scholar
  84. Korninger L, Knobl P, Laczika K, Mustafa S, Quehenberger P, Schwarzinger I, Lechner K, Jaeger U, Mannhalter C (1994) PML-RARα PCR positivity in the bone marrow of patients with APL precedes haematological relapse by 2–3 months. Br J Haematol 88: 427 – 431PubMedGoogle Scholar
  85. Kurokawa R, DiRenzo J, Boehm M, Sugarman J, Gloss B, Rosenfeld MG, Heyman RA, Glass CK (1994) Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371: 528 – 531PubMedGoogle Scholar
  86. Kurokawa R, Söderström M, Hörlein A, Halachmi S, Brown M, Rosenfeld MG, Glass CK (1995) Polarity- specific activities of retinoic acid receptors determined by a co-repressor. Nature 377: 451 – 454PubMedGoogle Scholar
  87. Lanotte M, Martin V, Najman S, Ballerini P, Valensi S, Berger R (1991) NB4, a maturation inducible cell line with t(15;17) marker isolated from a human promyelocytic leukemia (M3). Blood 77: 1080 – 1086PubMedGoogle Scholar
  88. Le Douarin B, Zechel C, Gamier J-M, Lutz Y, Tora L, Pierrat B, Heery D, Gronemeyer H, Chambon P, Losson R (1995) The N-terminal part of TIFI, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. Embo J 14: 2020 – 2033PubMedGoogle Scholar
  89. Lehmann JM, Jong L, Fanjul A, Cameron JF, Lu XP, Haefner P, Dawson MI, Pfahl M (1992) Retinoids selective for retinoid X receptor response pathways. Science 258: 1944 – 1946PubMedGoogle Scholar
  90. Leid M, Kastner P, Chambon P (1992a) Multiplicity generates diversity in the retinoic acid signaling pathways. TIBS 17: 427 – 433Google Scholar
  91. Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen J-Y, Staub A, Gamier J-M, Mader S, Chambon P (1992b) Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68: 377 – 395Google Scholar
  92. Lemons RS, Eilender D, Waldmann RA, Robentisch M, Frej AK, Ledbetter DM, Willman C, McConnel P (1990) Cloning and characterisation of the t(15;17) translocation breakpoint region in acute promyelocytic leukemia. Genes Chromosom Cancer 2: 79 – 87PubMedGoogle Scholar
  93. Leroy P, Krust A, Zelent A, Mendelsohn C, Gamier J-M, Kastner P, Dierich A, Chambon P (1991) Multiple isoforms of the mouse retinoic acid receptor a are generated by alternative splicing and differential induction by retinoic acid. EMBO J 10: 59 – 69PubMedGoogle Scholar
  94. Licht JD, Chomienne C, Goy A, Chen A, Scott AA, Head DR, Michaux JL, Wu Y, DeBiasio A, Miller WH, Zelenetz AD, Willman CL, Chen Z, Chen S-J, Zelent A, Macintyre E, Veil A, Cortes J, Kantarjian H, Waxman S (1995) Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 85: 1083 – 1094PubMedGoogle Scholar
  95. Linch DC, Fine LG, Fielding A, Machin SJ, Goldstone AH, Solomon E, Gann E (1994) Acute promyelocytic leukaemia. Lancet 344: 1615 – 1618Google Scholar
  96. Liu J-H, Mu Z-M, Chang KS (1995) PML suppresses oncogenic transformation of NIH/3T3 cells by activated neu. J Exp Med 181: 1965 – 1973PubMedGoogle Scholar
  97. Lo Coco F, Diverio D, Pandolfi PP, Biondi A, Rossi V, Avvisati G, Rambaldi A, Arcese W, Petti MC, Meloni G, Mandelli F, Grignani F, Masera G, Barbui T, Pelicci PG (1992) Molecular evaluation of residual disease as a predictor of relapse in acute promyelocytic leukemia. Lancet 340: 1437 – 1438PubMedGoogle Scholar
  98. Longo L, Pandolfi PP, Biondi A, Rambaldi A, Mencarelli A, Lo Coco F, Diverio D, Pegoraro L, Avanzi G, Tabilio A, Zangrilli D, Alcalay M, Donti E, Grignani F, Pelicci PG (1990) Rearrangements and aberrant expression of the retinoic acid α gene in acute promyelocytic leukemias. J Exp Med 172: 1571 – 1575PubMedGoogle Scholar
  99. Longo L, Trecca D, Biondi A, Lo Coco F, Grignani F, Maiolo MA, Pelicci PG, Neri A (1993) Frequency of RAS and p53 mutations in acute promyelocytic leukemias. Leuk Lymphoma 11: 405 – 410PubMedGoogle Scholar
  100. Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB (1991) Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352: 497 – 505PubMedGoogle Scholar
  101. McKenna RW, Parkin J, Bloomfield CD, Sundberg RD, Brunning RD (1982) Acute promyelocytic leukaemia: a study of 39 cases with identification of a hyperbasophilic microgranular variant. Br J Haematol 50: 201 – 214PubMedGoogle Scholar
  102. McKinney CD, Golden WL, Gemma NW, Swerdlow SH,Williams ME (1994) RARA and PML gene rearrangements in acute promyelocytic leukaemia with complex translocations and atypical features. Genes Chromosom Cancer 9: 49 – 56Google Scholar
  103. Maslak P, Miller WH, Heller G, Scheinberg DA, Dmitrovsky E, Warreil RP (1993) CD2 expression and PML RAR-a trancripts in acute promyelocytic leukemia. Blood 81: 1666 – 1667PubMedGoogle Scholar
  104. Mermod N, O’Neill EA, Kelly TJ, Tjian R (1989) The proline-rich transcriptional activator of CTF/NF-1 is distinct from the replication and DNA binding domain. Cell 58: 741 – 753PubMedGoogle Scholar
  105. Miki T, Fleming TP, Crescenzi M, Molloy CJ, Blam SB, Reynolds SH, Aaronson SA (1991) Development of a highly efficient expression cDNA cloning system: application to oncogene isolation. Proc Natl Acad Sci USA 88: 5167 – 5171PubMedGoogle Scholar
  106. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66 – 71PubMedGoogle Scholar
  107. Miller WH, Kakizuka A, Frankel SR, Warrell RP, DeBiasio A, Levine K, Evans R, Dmitrovsky E (1992) Reverse transcription polymerase chain reaction for the rearranged retinoic acid receptor α clarifies diagnosis and detects minimal residual disease in acute promyelocytic leukemia. Proc Natl Acad Sci USA 89: 2694 – 2698PubMedGoogle Scholar
  108. Miller WH, Levine K, DeBiasio A, Frankel SR, Dmitrovsky E, Warrell RP (1993) Detection of minimal residual disease in acute promyelocytic leukemia by a reverse transcription polymerase chain reaction assay for the PML/RAR-a fusion mRNA. Blood 82: 1689 – 1694PubMedGoogle Scholar
  109. Mitchell PJ, Tjian R (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245: 371 – 378PubMedGoogle Scholar
  110. Mitelman F (1994) Catalog of chromosomal aberrations in cancer 5th edn Liss, New York, pp: 2489–2499; 2759–2769Google Scholar
  111. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263: 1281 - 1284PubMedGoogle Scholar
  112. Mu Z-M, Chin K-V, Liu J-H, Lozano G, Chang K-S (1994) PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol 14: 6858 – 6867PubMedGoogle Scholar
  113. Nagpal S, Saunders M, Kastner P, Durand B, Nakshatri H, Chambon P (1992) Promoter context-andresponse element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell 70: 1007 – 1019PubMedGoogle Scholar
  114. Nucifora G, Larson RA, Rowley JD (1993) Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 82: 712 – 715PubMedGoogle Scholar
  115. Paietta E, Andersen J, Gallagher R, Bennett J, Yunis J, Cassileth P, Rowe J, Wiernik PH (1994) The immunophenotype of acute promyelocytic leukemia (APL): and ECOG study. Leukemia 8: 1108–1112 Pandolfi PP, Grignani F, Alcalay M, Mencarelli A, Biondi A, Lo Coco F, Grignani F, Pelicci PG (1991) Structure and origin of the acute promyelocytic leukemia myl/RARα cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 6: 1285 – 1292Google Scholar
  116. Pandolfi PP, Alcalay M, Fagioli M, Zangrilli D, Mencarelli A, Diverio D, Biondi A, Lo Coco F, Rambaldi A, Grignani F, Rochette-Egly C, Gaube M-P, Chambon P, Pelicci PG (1992) Genomic variability and alternative splicing generate multiple PML/RARα transcripts that encode aberrant PML proteins and PML/RARα isoforms in acute promyelocytic leukaemia. EMBO J 11: 1397 – 1407PubMedGoogle Scholar
  117. Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P (1993) PML/RAR homodimers: distinct DNA binding properties and heteromeric interaction with RXR. EMBO J 12: 3171 – 3182PubMedGoogle Scholar
  118. Preston RA, Manolson MF, Becherer K, Weidenhammer E, Kirkpatrick D, Wright R, Jones EW (1991) Isolation and characterization of PEP3, a gene required for vacuolar biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 11: 5801 – 5812PubMedGoogle Scholar
  119. Puvion-Dutilleul F, Chelbi-Alix MK, Koken M, Quignon F, Puvion E, de Thé H (1995) Adenovirus infection induces rearrangements in the intranuclear distribution of the nuclear body-associated PML protein. Exp Cell Res 218: 9 – 16PubMedGoogle Scholar
  120. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ (1996) The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 87: 882 – 886PubMedGoogle Scholar
  121. Robertson KA, Emami B, Collins SJ (1992a) Retinoic acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor ligand-binding domain that confers dominant negative activity. Blood 80: 1885 – 1889Google Scholar
  122. Robertson KA, Emami B, Mueller L, Collins SJ (1992b) Multiple members of the retinoic acid receptor family are capable of mediating the granulocytic differentiation of HL-60 cells. Mol Cell Biol 12: 3743 – 3749Google Scholar
  123. Robinson JS, Graham TR, Emr SD (1991) A putative zinc finger protein, Saccharomyces cerevisiaeVps18p, affects late Golgi functions required for vacuolar protein sorting and efficient α-factor prohormone maturation. Mol Cell Biol 12: 5813 – 5824Google Scholar
  124. Rodeghiero F, Castaman G (1994) The pathophysiology and treatment of hemorrhagic syndrome of acute promyelocytic leukemia. Leukemia 8 (Suppl): s20 – s26PubMedGoogle Scholar
  125. Rowley JD, Golomb HM, Dougherty C (1977) 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 1: 549–550Google Scholar
  126. Saitou M, Sugai S, Tanaka T, Shimouchi K, Fuchs E, Narumiya S, Kakizuka A (1995) Inhibition of skin development by targeted expression of a dominant negative retinoic acid receptor. Nature 374: 159 – 162PubMedGoogle Scholar
  127. Sakashita A, Kizaki M, Pakkala S, Schiller G, Tsuruoka, Tomosaki R, Cameron JF, Dawson MI, Koeffler HP (1993) 9-cis-retinoic acid: effects on normal and leukaemic haematopoiesis in vitro. Blood 81:1009–1016Google Scholar
  128. Sarkar A, Yang P, Fan Y-H, Mu Z-M, Hauptmann R, Adolf GR, Stass SA, Chang K-S (1994) Regulation of the expression of annexin VIII in acute promylocytic leukemia. Blood 84: 279 – 286PubMedGoogle Scholar
  129. Sawyers CL, Denny CT, Witte ON (1991) Leukemia and the disruption of normal haematopoiesis. Cell 64: 337 – 350PubMedGoogle Scholar
  130. Schatz DG, Oettinger MA, Baltimore D (1989) The V(D)J recombination activating gene, RAG-1. Cell 59: 1035 – 1048PubMedGoogle Scholar
  131. Schrader M, Wyss A, Sturzenbecker LJ, Grippo JF, LeMotte P, Carlberg C (1993) RXR-dependent and RXR-independent transactivation by retinoic acid receptors. Nucleic acid Res 21: 1231 – 1237PubMedGoogle Scholar
  132. Schwabe JWR, Chapman L, Finch JT, Rhodes D (1993) The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: How receptors discriminate between their response elements. Cell 75: 567 – 578PubMedGoogle Scholar
  133. Seale J, Marcus R, Janossy G, Swirsky D, Goldman J, Cross N, Pandolfi PP (1994) Quantitative assessment of minimal residual disease in acute promyelocytic leukemia by RT-PCR: Evaluation of techniques to improve sensitivity. Blood 84 (Suppl): 301aGoogle Scholar
  134. Stadler M, Chelbi-Alix MK, Koken MHM, Venturini L, Lee C, Säib A, Quignon F, Pelicano L, Guillemin M-C, Schindler C, de Thé H (1995) Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 11: 2565 – 2573PubMedGoogle Scholar
  135. Stone RM, Mayer RJ (1990) The unique aspects of acute promyelocytic leukemia. J Clin Oncol 8: 1913 – 1921PubMedGoogle Scholar
  136. Stunnenberg HG (1993) Mechanisms of transactivation by retinoic acid receptors. Bioessays 15: 309 – 315PubMedGoogle Scholar
  137. Stuurman N, de Graaf A, Floore A, Josso A, Humbel B, de Jong L, van Driel R (1992) A monoclonal antibody recognizing nuclear matrix-associated nuclear bodies. J Cell Sc 101: 773 – 784Google Scholar
  138. Sucov HM, Dysøn E, Gumeringer CL, Price J, Chien KR, Evans RM, (1994) RXRα mutant mice establish a genetic basis for vitamin A signalling in heart morphogenesis. Genes Dev 8: 1007 – 1018PubMedGoogle Scholar
  139. Swansbury GJ, Lawler SD, Alimena G, Arthur D, Berger R, Van Den Berghe H, Bloomfield CD, de la Chapelle A, Dewald G, Garson OM, Hagemeijer A, Mitelman F, Rowley JD, Sakurai M (1994) Long-term survival in acute myelogenous leukemia: A second follow-up of the fourth international workshop on chromosomes in leukemia. Cancer Genet Cytogenet 73: 1 – 7PubMedGoogle Scholar
  140. Takahashi M, Inaguma Y, Hiai H, Hirose F (1988) Developmentally regulated expression of a human finger-containing gene encoded by the 5′ half of the ret transforming gene. Mol Cell Biol 8: 1853 - 1856PubMedGoogle Scholar
  141. Tallman MS, Kwaan HC (1992) Reassessing the hemostatic disorder associated with acute promyelocytic leukemia. Blood 79: 543 – 553PubMedGoogle Scholar
  142. Tashiro S, Kotomura N, Tanaka K, Suzuki K, Kyo T, Dohy H, Niwa O, Kamada N (1994) Identification of illegitimate recombination hot spot of the retinoic acid receptor alpha gene involved in 15; 17 chromosomal translocation of acute promyelocytic leukemia. Oncogene 9: 1939 – 1945PubMedGoogle Scholar
  143. Terris B, Baldin V, Dubois S, Degott C, Flejou J-F, Henin D, Dejean A (1995) PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Res 55: 1590 – 1597PubMedGoogle Scholar
  144. Testa U, Grignani F, Barberi T, Fagioli M, Masciulli R, Ferruci PF, Seripa D, Camagna A, Alcalay M, Pelicci PG, Peschle C (1994) PML/RARα+ U937 mutant and NB4 cell lines: retinoic acid restores the monocytic differentiation response to vitamin D3. Cancer Res 54: 4508 - 4515PubMedGoogle Scholar
  145. Tobal K, Liu Yin JA (1995) Detection of persistent PML-RARα positive cells in long term remission of acute promyelocytic leukaemia (APL) by a sensitive “hot start” RT-PCR. Br J Haematol 89 (Suppl): 59Google Scholar
  146. Tsai S, Collins SJ (1993) A dominant retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage. Proc Natl Acad USA 90: 7153 – 7157Google Scholar
  147. Umesono K, Murakami KK, Thompson CC, Evans RM (1991) Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65: 1255 – 1266PubMedGoogle Scholar
  148. Vahdat L, Maslak P, Miller WH, Eardley A, Heller G, Scheinberg DA, Warreil RP (1994) Early mortality and the retinoic acid syndrome in acute promyelocytic leukemia: Impact of leukocytosis, low-dose chemotherapy, PML-RAR-α isoform, and CD 13 expression in patients treated with all-transretinoic acid. Blood 84: 3843 – 3849PubMedGoogle Scholar
  149. Warrell RP (1993) Retinoid resistance in acute promyelocytic leukemia: new mechanisms, strategies, and implications. Blood 82: 1949 – 1953PubMedGoogle Scholar
  150. Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A (1994) Retinoic acid regulates aberrant nuclear localization of PML-RARα in acute promyelocytic leukaemia cells. Cell 76: 345 – 356PubMedGoogle Scholar
  151. Woolford CA, Dixon CK, Manolson MF, Wright R, Jones EW (1990) Isolation and characterization of PEP5, a gene essential for vacuolar biogenesis in saccharomyces cerevisiae. Genetics 125: 739 – 752PubMedGoogle Scholar
  152. Zhang X-K, Hoffmann B, Tran P B-V, Graupner G, Pfahl M (1992) Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature 355: 441 – 446PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • D. Grimwade
    • 1
  • E. Solomon
    • 1
  1. 1.Somatic Cell Genetics LaboratoryImperial Cancer Research FundLondonUK

Personalised recommendations