Advertisement

Transcription Factors of the bHLH and LIM Families: Synergistic Mediators of T Cell Acute Leukemia?

  • R. Baer
  • L.-Y. Hwang
  • R. O. Bash
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 220)

Abstract

Patients with T cell acute lymphoblastic leukemia (T-ALL) often harbor tumor-specific chromosome translocations in their malignant cells (reviewed by Raimondi 1993). In an effort to understand the etiology of T-ALL, many investigators have sought to identify the genes that are altered as a consequence of these chromosomal defects (Rabbitts 1994). To date these studies have uncovered nine presumptive proto-oncogenes, each of which can be activated in T-ALL cells by aberrant juxtaposition with the T cell receptor sequences on chromosomes 7 or 14 (Hwang and BAER 1995). For instance, the (8;14) (q24;q11) translocation serves to deregulate the MYC gene on chromosome 8 by recombining it with the T cell receptor α/δ chain locus on chromosome 14. The various proto-oncogenes implicated in T-ALL are listed in Table 1, along with the major chromosome translocations that are responsible for their activation.

Keywords

Acute Lymphoblastic Leukemia Amino Acid Motif bHLH Protein bHLH Domain bHLH Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aplan PD, Lombardi DP, Ginsberg AM, Cossman J, Bertness VL and Kirsch IR (1990) Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science 250: 1426 – 1429PubMedCrossRefGoogle Scholar
  2. Aplan PD, Lombardi DP and Kirsch IR (1991) Structural characterization of SIL, a gene frequently disrupted in T-cell acute lymphoblastic leukemia. Mol Cell Biol 11: 5462 – 5469PubMedGoogle Scholar
  3. Aplan PD, Lombardi DP, Reaman GH, Sather HN, Hammond GD and Kirsch IR (1992a) Involvement of the putative hematopoietic transcription factor SCLin T-cell acute lymphoblastic leukemia. Blood 79: 1327 – 1333Google Scholar
  4. Archer V, Breton J, Sanchez-Garcia I, Osada H, Forster A, Thomson AJ and Rabbitts TH (1994) The cysteine-rich domains of LIM proteins RBTN and Isl-1 contain zinc but not iron. Proc Natl Acad Sci USA 91: 316 – 320PubMedCrossRefGoogle Scholar
  5. Baer R (1993) TALI, TAL2, and LYL1: A family of basic helix-loop-helix proteins implicated in T cell acute leukemia. Sem Cancer Biol 4: 341 – 347Google Scholar
  6. Bash RO, Crist WM, Shuster JJ, Link MP, Amylon M, Pullen J, Carroll AJ, Buchanan GR, Smith RG and Baer R (1993) Clinical features and outcome of T-cell acute lymphoblastic leukemia in childhood with respect to alterations at the TALI locus: A Pediatric Oncology Group Study. Blood 81: 2110 – 2117PubMedGoogle Scholar
  7. Bash RO, Hall S, Timmons CF, Crist WM, Amylon M, Smith RG and Baer R (1995) Does activation of the TALI gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A pediatric Oncology Group Study. Blood 86: 666 – 676PubMedGoogle Scholar
  8. Bernard O, Lecointe N, Jonveaux P, Souyri M, Mauchauffe M, Berger R, Larsen CJ and Mathieu-Mahul D (1991) Two site-specific deletions and t(1;14) translocation restricted to human T-cell acute leukemias disrupt the 5’ part of the tal-1 gene. Oncogene 6: 1477 – 1488PubMedGoogle Scholar
  9. Boehm T, Baer R, Lavenir I, Forster A, Waters JJ, Nacheva E and Rabbitts TH (1988) The mechanism of chromosomal translocation t(11; 14) involving the T-cell receptor cδlocus on human chromosome 14q11 and a transcribed region of chromosome 11p15. EMBO J 7: 385 – 394PubMedGoogle Scholar
  10. Boehm T, Foroni L, Kaneko Y, Perutz MF and Rabbitts TH (1991) The rhombotin family of cysteinerich LIM-domain oncogenes: Distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci USA 88: 4367 – 4371PubMedCrossRefGoogle Scholar
  11. Boehm T, Foroni L, Kennedy M and Rabbitts TH (1990) The rhombotin gene belongs to a class of transcriptional regulators with a potential novel protein dimerization motif. Oncogene 5: 1103 – 1105PubMedGoogle Scholar
  12. Brown L, Cheng J-T, Chen Q, Siciliano MJ, Crist W, Buchanan G and Baer R (1990) Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J 9: 3343 – 3351PubMedGoogle Scholar
  13. Cheng J-T, Hsu H-L, Hwang L-Y and Baer R (1993b) Products of the TAL1oncogene: Basic helix-loop-helix proteins phosphorylated at serine residues. Oncogene 8: 677 – 683Google Scholar
  14. Condorelli G, Vitelli L, Valtieri M, Marta I, Montesoro E, Lulli V, Baer R and Peschle C (1995) Coordinate expression and developmental role of Id2 protein and TAL1/E2A heterodimer in erythroid progenitor differentiation. Blood 86: 164 – 175PubMedGoogle Scholar
  15. Ferre-DAmare AR, Prendergast GC, Ziff EB and Burlet SK (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363: 38 – 45CrossRefGoogle Scholar
  16. Feuerstein R, Wang X, Song D, Cooke NE and Liebhaber SA (1994) The LIM/double zinc-finger motif functions as a protein dimerization domain. Proc Natl Acad Sci USA 91: 10655 – 10659PubMedCrossRefGoogle Scholar
  17. Fisch P, Boehm T, Lavenir I, Larson T, Arno J, Forster A and Rabbitts TH (1992) T-cell acute lymphoblastic lymphoma induced in transgenic mice by the RBTN1 and RBTN2 LIM-domain genes. Oncogene 7: 2389 – 2397PubMedGoogle Scholar
  18. Freyd G, Kim SK and Horvitz HR (1990) Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis eleganscell lineage gene lin-IINature 344: 876 – 879Google Scholar
  19. Gaidano G and Dalla-Favera R (1993) Biologic and molecular characterization of non-Hodgkin’s Lymphoma. Cur Opin Oncol 5: 776 – 784CrossRefGoogle Scholar
  20. Gauwerky CE and Croce CM (1993) Chromosomal translocations in leukaemia. Sem Cancer Biol 4: 333 – 340Google Scholar
  21. Hsu H-L, Cheng J-T, Chen Q and Baer R (1991) Enhancer-binding activity of the tal-1 oncoprotein in association with the E47/E12 helix-loop-helix proteins. Mol Cell Biol 11: 3037 – 3042PubMedGoogle Scholar
  22. Hsu H-L, Huang L, Tsan JT, Funk W, Wright WE, Hu J-S, Kingston RE and Baer R (1994a) Preferred sequences for DNA recognition by the TALI helix-loop-helix proteins. Mol Cell Biol 14: 1256 – 1265Google Scholar
  23. Hsu H-L, Wadman I and Baer R (1994b) Formation of in vivo complexes between the TAL1 and E2A polypeptides of leukemic T cells. Proc Natl Acad Sci USA 91: 3181 – 3185CrossRefGoogle Scholar
  24. Hsu H-L, Wadman I, Tsan JT and Baer R (1994c) Positive and negative transcriptional control by the TALI helix-loop-helix protein. Proc Natl Acad Sci USA 91: 5947–5951Google Scholar
  25. Hunter T (1991) Cooperation between oncogenes. Cell 64: 249 – 270PubMedCrossRefGoogle Scholar
  26. Hwang L-Y and Baer R (1995) The role of chromosome translocations in T cell acute leukemia. Cur Opin Immunol 7: 659 – 664CrossRefGoogle Scholar
  27. Kadesch T (1993) Consequences of heteromeric interactions among helix-loop-helix proteins. Cell Growth Differ 4: 49 – 55PubMedGoogle Scholar
  28. Kallianpur AR, Jordan JE and Brandt SJ (1994) The SCL/TAL-1gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood 83: 1200 – 1208PubMedGoogle Scholar
  29. Karlsson O, Thor S, Norberg T, Ohlsson H and Edlund T (1990) Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a horneo- and a Cys-His domain. Nature 344: 879 – 882PubMedCrossRefGoogle Scholar
  30. Kosa JL, Michelsen JW, Louis HA, Olsen JI, Davis DR, Beckerle MC and Winge DR (1994) Common metal ion coordination in LIM domain proteins. Biochemistry 33: 468 – 477PubMedCrossRefGoogle Scholar
  31. Kuo SS, Mellentin JD, Copeland NG, Gilbert DJ, Jenkins NA and Cleary ML (1991) Structure, chromosome mapping, and expression of the mouse Lyl-1gene. Oncogene 6: 961 – 968PubMedGoogle Scholar
  32. Larson RC, Osada H, Larson TA, Lavenir I and Rabbitts TH (1995) The oncogenic LIM protein Rbtn2 causes thymic developmental aberrations that precede malignancy in transgenic mice. Oncogene 11: 853 – 862PubMedGoogle Scholar
  33. McGuire EA, Davis AR and Korsmeyer SJ (1991) T-cell translocation gene 1 (Ttg-1) encodes a nuclear protein normally expressed in neural lineage cells. Blood 77: 599 – 606PubMedGoogle Scholar
  34. McGuire EA, Hockett RD, Pollock KM, Bartholdi MF, O’Brien SJ and Korsmeyer SJ (1989) The t(11; 14) (p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol 9: 2124 – 2132PubMedGoogle Scholar
  35. McGuire EA, Rintoul CE, Sciar GM and Korsmeyer SJ (1992) Thymic overexpression of Ttg-1in transgenic mice results in T-cell acute lymphoblastic leukemia/lymphoma. Mol Cell Biol 12: 4186 – 4196PubMedGoogle Scholar
  36. Michelsen JW, Scheichel KL, Beckerle MC and Winge DR (1993) The LIM motif defines a specific zinc-binding protein domain. Proc Natl Acad Sci USA 90: 4404 – 4408PubMedCrossRefGoogle Scholar
  37. Mouthon M-A, Bernard O, Mätjavila M-T, Romeo P-H, Vainchenker W and Mathieu-Mahul D (1993) Expression of tal-1 and GATA-binding proteins during human hematopoiesis. Blood 81: 647 – 655PubMedGoogle Scholar
  38. Murre C, Bain G, van Dijk MA, Engel I, Furnari BA, Massari ME, Matthews JR, Quong MW, Rivera RR and Stuiver MH (1994) Structure and function of helix-loop-helix proteins. Biochim Biophys Acta 1218: 129 – 135PubMedGoogle Scholar
  39. Murre C, McCaw PS and Baltimore D (1989a) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56: 777 – 783CrossRefGoogle Scholar
  40. Orkin SH (1992) GATA-binding transcription factors in hematopoietic cells. Blood 80: 575 – 581PubMedGoogle Scholar
  41. Osada H, Grutz G, Axelson H, Forster A and Rabbitts TH (1995) Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA-1. Proc Natl Acad Sci USA 92: 9585 – 9589PubMedCrossRefGoogle Scholar
  42. Perez-Alvarado GC, Miles C, Michelsen JW, Louis HA, Winge DR, Beckerle MC and Summers MF (1994) Structure of the carboxy-terminal LIM domain from the cysteine rich protein CRP. Nature Struct Biol 1: 388 – 398PubMedCrossRefGoogle Scholar
  43. Pevny L, Simon MC, Robertson E, Klein WH, Tsai S-F, D’Agati V, Orkin SH and Costantini F (1991) Erythroid differentiation in chimeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349: 257 – 260PubMedCrossRefGoogle Scholar
  44. Pui C-H (1995) Childhood Leukemias. New Eng J Med 332: 1618 – 1630PubMedCrossRefGoogle Scholar
  45. Pulford K, Lecointe N, Leroy-Viard K, Jones M, Mathieu-Mahul D and Mason DY (1995) Expression of TAL-1 proteins in human tissues. Blood 85: 675 – 684PubMedGoogle Scholar
  46. Rabbitts TH (1994) Chromosomal translocations in human cancer. Nature 372: 143 – 149PubMedCrossRefGoogle Scholar
  47. Raimondi SC (1993) Current status of cytogenetic research in childhood acute lymphoblastic leukemia. Blood 81: 2237 – 2251PubMedGoogle Scholar
  48. Royer-Pokora B, Loos U and Ludwig W-D (1991) TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11; 14) (p13; q11). Oncogene 6: 1887 – 1893PubMedGoogle Scholar
  49. Sadler I, Crawford AW, Michelsen JW and Beckerle MC (1992) Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. J Cell Biol 119: 1573 – 1587PubMedCrossRefGoogle Scholar
  50. Sanchez-Garcia I and Rabbitts TH (1993) LIM domain proteins in leukaemia and development. Sem Cancer Biol 4: 349 – 358Google Scholar
  51. Sanchez-Garcia I and Rabbitts TH (1994) The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet 10: 315 – 320PubMedCrossRefGoogle Scholar
  52. Schmeichel KL and Beckerle MC (1994) The LIM domain is a modular protein-binding interface. Cell 79: 211 – 219PubMedCrossRefGoogle Scholar
  53. Shivdasani RA, Mayer EL and Orkin SH (1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373: 432 – 434PubMedCrossRefGoogle Scholar
  54. Valge-Archer VE, Osada H, Warren A, Forster A, Li J, Baer R and Rabbitts TH (1994) Two oncogenes RBTN2 and TALI involved in T cell acute leukaemias produce proteins which complex with each other in erythroid cells. Proc Natl Acad Sci USA 91: 8617 – 8621PubMedCrossRefGoogle Scholar
  55. Wadman I, Li J, Bash RO, Forster A, Osada H, Rabbitts TH and Baer R (1994) Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J 13: 4831 – 4839PubMedGoogle Scholar
  56. Warren AJ, Colledge WH, Carlton MBL, Evans MJ, Smith AJH and Rabbitts TH (1994) The oncogenic cysteine-rich LIM domain protein Rbtn2 is essential for erythroid development. Cell 78: 45 – 57PubMedCrossRefGoogle Scholar
  57. Way JC and Chalfie M (1988) mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54: 5–16Google Scholar
  58. Xia Y, Brown L, Yang CY-C, Tsan JT, Siciliano MJ, Espinosa III R, Le Beau MM and Baer RJ (1991) TAL2, a helix-loop-helix gene activated by the (7; 9) (q34; q32) translocation in human T-cell leukemia. Proc Natl Acad Sci USA 88: 11416 – 11420PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • R. Baer
    • 1
  • L.-Y. Hwang
    • 1
  • R. O. Bash
    • 2
  1. 1.Molecular Immunology Center, Department of MicrobiologyUT Southwestern Medical Center at DallasDallasUSA
  2. 2.Molecular Immunology Center, Department of PediatricsUT Southwestern Medical Center at DallasDallasUSA

Personalised recommendations