E2A-HLF Chimeric Transcription Factors in Pro-B Cell Acute Lymphoblastic Leukemia

  • A. T. Look
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 220)


Somatically acquired chromosomal translocations result in the abnormal expression of proteins that may contribute to neoplasia by interfering with or mimicking the action of growth factors and their receptors, signal transducers, or nuclear regulatory proteins and transcription factors, which affect gene expression directly. Oncogenesis mediated by transcription factors is particularly important in the acute leukemias and sarcomas, malignancies in which chromosomal translocations and inversions commonly activate genes encoding transcriptional regulatory proteins (Rowley et al. 1993; Rabbitts 1994). The modular organization of transcription factors provides an ideal mechanism for mediating their multiple effects on cell lineage-specific gene expression: binding to DNA, trans-activation or trans-repression of target genes and protein-protein interactions within complex regulatory networks.


Acute Lymphoblastic Leukemia Chromosomal Translocation bZIP Protein bHLH Domain Transcriptional Regulatory Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronheim A, Shiran R, Rosen A, Walker MD (1993) The E2A gene product contains two separable and functionally distinct transcription activation domains. Proc Natl Acad Sci USA 90: 8063 – 8067PubMedCrossRefGoogle Scholar
  2. Bain G, Gruenwald S, Murre C (1993) E2A and E2-2 are subunits of B-cell-specific E2-box DNA-binding proteins. Mol Cell Biol 13: 3522 – 3529PubMedGoogle Scholar
  3. Bain G, Robanus-Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, Krop I, Schlissel MS, Feeney AJ, van Roon M, van der Valk M, te Riele HPJ, Berns A, Murre C (1994) E2A proteins are required for proper B-cell development and initiation of immunoglobulin gene rearrangements. Cell 79: 885 – 892PubMedCrossRefGoogle Scholar
  4. Begley CG, Aplan PD, Davey MP, Nakahara K, Tchorz K, Kurtzberg J, Hershfield MS, Haynes BF, Cohen DI, Waldmann TA et al. (1989) Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA 86: 2031 – 2035PubMedCrossRefGoogle Scholar
  5. Benezra R (1994) An intermolecular disulfide bond stabilizes E2A homodimers and is required for DNA binding at physiological temperatures. Cell 79: 1057 – 1067PubMedCrossRefGoogle Scholar
  6. Blackwell TK, Weintraub H (1990) Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250: 1104 – 1110PubMedCrossRefGoogle Scholar
  7. Buckingham M (1994) Molecular biology of muscle development. Cell 78: 15 – 21PubMedCrossRefGoogle Scholar
  8. Caudy M, Vassin H, Brand M, Turna R, Jan LY, Jan YN (1988) daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete- scute complex. Cell 55: 1061–1067Google Scholar
  9. Chen Q, Cheng JT, Tasi LH, Schneider N, Buchanan G, Carroll A, Crist W, Ozanne B, Siciliano MJ, Baer R (1990) The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J 9: 415 – 424PubMedGoogle Scholar
  10. Cronmiller C, Schedi P, Cline TY (1988) Molecular characterization of daughterless, a Drosophila sex determination gene with multiple roles in development. Genes Dev 2: 1666 – 1676PubMedCrossRefGoogle Scholar
  11. Devaraj PE, Foroni L, Sekhar M, Butler T, Wright F, Mehta A, Samson D, Prentice HG, Hoffbrand AV, Secker-Walker LM (1994) E2A/HLF fusion cDNAs and the use of RT-PCR for the detection of minimal residual disease in t(17;19) (q22;pl3) acute lymphoblastic leukemia. Leukemia 8: 1131 – 1138PubMedGoogle Scholar
  12. Downing JR, Look AT (1995) MLL fusion genes in the 11q23 acute leukemias. In: Freireich EJ, Kantarjian H (eds) Leukemia: advances in research and treatment. Kluwer Academic, Boston, pp 73 – 91Google Scholar
  13. Drolet DW, Scully KM, Simmons DM, Wegner M, Chu KT, Swanson LW, Rosenfeld MG (1991) TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins. Genes Dev 5: 1739 – 1753PubMedCrossRefGoogle Scholar
  14. Ellenberger T, Fass D, Arnaud M, Harrison SC (1994) Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev 8: 970 – 980PubMedCrossRefGoogle Scholar
  15. Falvey E, Fleury-Olela F, Schibier U (1995) The rat hepatic leukemia factor (HLF) gene encodes two transcriptional activators with distinct circadian rhythms, tissue distributions and target preferences. EMBO J 14: 4307 – 4317PubMedGoogle Scholar
  16. Haas NB, Cantwell CA, Johnson PF, Burch JBE (1995) DNA-binding specificity of the PAR basic leucine zipper protein VBP partially overlaps those of the C/EBP and CREB/ATF families and is influenced by domains that flank the core basic region. Mol Cell Biol 15: 1923 – 1932PubMedGoogle Scholar
  17. Henthorn P, Kiledjian M, Kadesch T (1990a) Two distinct transcription factors that bind the immunoglobulin enhancer E5/E2 motif. Science 247: 467 – 470CrossRefGoogle Scholar
  18. Henthorn P, McCarrick-Walmsley R, Kadesch T (1990b) Sequence of the cDNA encoding ITF-1, a positive-acting transcription factor. Nucleic Acids Res 18: 677CrossRefGoogle Scholar
  19. Hunger SP, Ohyashiki K, Toyama K, Cleary ML (1992) HLF, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17; 19) acute lymphoblastic leukemia. Genes Dev 6: 1608 - 1620PubMedCrossRefGoogle Scholar
  20. Hunger SP, Devaraj PE, Foroni L, Seeker-Walker LM, Cleary ML, (1994a) Two types of genomic rearrangements create alternative E2A-HLF fusion proteins in t(17;19)-ALL. Blood 83: 2261 – 2267Google Scholar
  21. Hunger SP, Brown R, Cleary ML (1994b) DNA-binding and transcriptional regulatory properties of hepatic leukemia factor (HLF) and the t(17; 19) acute lymphoblastic leukemia chimera E2A-HLF. Mol Cell Biol 14: 5986 – 5996Google Scholar
  22. Hsu HL, Huang L, Tsan JT, Funk W, Wright WE, Hu JS, Kingston RE, Baer R (1994) Preferred sequences for DNA recognition by the TALI helix-loop-helix proteins. Mol Cell Biol 14: 1256 – 1265PubMedGoogle Scholar
  23. Inaba T, Shapiro LH, Funabiki T, Sinclair AE, Jones BG, Ashmun RA, Look AT (1994) DNA-binding specificity and trans-activating potential of the leukemia-associated E2A-Hepatic Leukemia Factor fusion protein. Mol Cell Biol 14: 3403 – 3413PubMedGoogle Scholar
  24. Inaba T, Roberts WM, Shapiro LH, Jolly KW, Raimondi SC, Smith SD, Look AT (1992) Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 257: 531 – 534PubMedCrossRefGoogle Scholar
  25. Inaba T, Roberts WM, Shapiro LH, Jolly KW, Raimondi SC, Smith SD, Look AT (1992) Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 257: 531 – 534PubMedCrossRefGoogle Scholar
  26. Izraeli S, Kovar H, Gadner H, Lion T (1992) Unexpected heterogeneity in E2A/PBX1 fusion messenger RNA detected by the polymerase chain reaction in pediatric patients with acute lymphoblastic leukemia. Blood 80: 1413 – 1417PubMedGoogle Scholar
  27. Kamps MP, Murre C, Sun XH, Baltimore D (1990) A new homeobox gene contributes the DNA binding domain of the t(1; 19) translocation protein in pre-B ALL. Cell 60: 547 – 555PubMedCrossRefGoogle Scholar
  28. Khatib ZA, Inaba T, Valentine M, Look AT (1994) Chromosomal localization and cDNA cloning of the human DBP and TEF genes. Genomics 23: 344 – 351PubMedCrossRefGoogle Scholar
  29. Lassar AB, Davis RL, Wright WE, Kadesch T, Murre C, Voronova A, Baltimore D, Weintraub H (1991) Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66: 305 – 315PubMedCrossRefGoogle Scholar
  30. LeBrun DL, Cleary ML (1994) Fusion with E2A alters the transcriptional properties of the homeo-domain protein PBX1 in t(1;19) leukemias. Oncogene 9: 1641 – 1647PubMedGoogle Scholar
  31. Look AT (1995) Oncogenic role “master” transcription factors in human leukemias and sarcomas: a developmental model. In: Vande Woude G (ed) Advances in cancer research. Academic, San Diego, pp 25 – 55Google Scholar
  32. Lu Q, Wright DD, Kamps MP (1994) Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1:19) translocation. Mol Cell Biol 14: 3938 – 3948PubMedGoogle Scholar
  33. Mueller CR, Maire P, Schibier U (1990) DBP, a liver-enriched transcriptional activator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionally. Cell 61: 279 – 291PubMedCrossRefGoogle Scholar
  34. Murre C, McCaw PS, Baltimore D (1989a) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56: 777 – 783CrossRefGoogle Scholar
  35. Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Cabrera CV, Buskin JN, Hauschka SD, Lassar AB, Weintraub H, Baltimore D (1989b) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537 – 544CrossRefGoogle Scholar
  36. Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD, Cleary ML (1990) Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60: 535 – 545PubMedCrossRefGoogle Scholar
  37. Numata S, Kato K, Horibe K (1993) New E2A/PBX1 fusion transcript in a patient with t(1;19) (q23; p13) acute lymphoblastic leukemia. Leukemia 7: 1441PubMedGoogle Scholar
  38. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Droso¬phila. Nature 287: 795 – 801PubMedCrossRefGoogle Scholar
  39. Nusslein-Volhard C, Frohnhofer HG, Lehmann R (1987) Determination of anteroposterior polarity in Drosophila. Science 238: 1675 – 1681PubMedCrossRefGoogle Scholar
  40. Ohyashiki K, Fujieda H, Miyauchi J, Ohyashiki JH, Tauchi T, Saito M, Nakazawa S, Abe K, Yamamoto K, Clark SC et al. (1991) Establishment of a novel heterotransplantable acute lymphoblastic leukemia cell line with a t(17;19) chromosomal translocation the growth of which is inhibited by interleukin-3. Leukemia 5: 322 – 331PubMedGoogle Scholar
  41. Privitera E, Kamps MP, Hayashi Y, Inaba T, Shapiro LH, Raimondi SC, Behm F, Hendershot L, Carroll AJ, Baltimore D, Look AT (1992) Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood 79: 1781 – 1788PubMedGoogle Scholar
  42. Quong MW, Massari ME, Zwart R, Murre C (1993) A new transcriptional-activation motif restricted to a class of helix-loop-helix proteins is functionally conserved in both yeast and mammalian cells. Mol Cell Biol 13: 792 – 800PubMedGoogle Scholar
  43. Rabbitts TH (1994) Chromosomal translocations in human cancer. Nature 372: 143 – 149PubMedCrossRefGoogle Scholar
  44. Raimondi SC, Privitera E, Williams DL, Looks AT, Behm F, Rivera GK, Crist WM, Pui C (1991) New recurring chromosomal translocations in childhood acute lymphoblastic leukemia. Blood 77: 2016 – 2022PubMedGoogle Scholar
  45. Rowley JD, Aster JC, Sklar J (1993) The clinical applications of new DNA diagnostic technology on the management of cancer patients. J Am Med Assoc 270: 2331 – 2337CrossRefGoogle Scholar
  46. Shivdasani RA, Mayer EL, Orkin SH (1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373: 432 – 434PubMedCrossRefGoogle Scholar
  47. Sun XH, Baltimore D (1991) An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 64: 459 – 470PubMedCrossRefGoogle Scholar
  48. Van Dijk MA, Voorhoeve PM, Murre C (1993) Pbx1 is converted into a transcriptional activator upon acquiring the N-terminal region of E2A in pre-B-cell acute lymphoblastoid leukemia. Proc Natl Acad Sci USA 90: 6061 – 6065PubMedCrossRefGoogle Scholar
  49. Vinson CR, Sigler PB, McKnight SL (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246: 911 – 916PubMedCrossRefGoogle Scholar
  50. Weintraub H (1993) The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75: 1241 – 1244PubMedCrossRefGoogle Scholar
  51. Xia Y, Brown L, Yang CY, Tsan JT, Siciliano MJ, Espinosa III R, Le Beau MM, Baer RJ (1991) TAL2, a helix-loop-helix gene activated by the (7;9) (q34; q32) translocation in human T-cell leukemia. Proc Natl Acad Sci USA 88: 11416 – 11420PubMedCrossRefGoogle Scholar
  52. Xia Y, Hwang LH, Cobb MH, Baer RJ (1994) Products of the TAL2 oncogene in leukemic T cells: bHLH phosphoproteins with DNA-binding activity. Oncogene 9: 1437 – 1446PubMedGoogle Scholar
  53. Yoshihara T, Inaba T, Shapiro LH, Kato J, Look AT (1995) E2A-HLF-mediated cell transformation requires both the trans-activation domain of E2A and the leucine zipper dimerization domain of HLF. Mol Cell Biol 15: 3247 – 3255PubMedGoogle Scholar
  54. Zhuang Y, Soriano P, Weintraub H (1994) The helix-loop-helix gene E2A is required for B-cell formation. Cell 79: 875 – 884PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • A. T. Look
    • 1
  1. 1.Department of Experimental OncologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations