E2A-Pbx1 Induces Growth, Blocks Differentiation, and Interacts with Other Homeodomain Proteins Regulating Normal Differentiation

  • M. P. Kamps
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 220)


Arrested differentiation is a hallmark of progenitor cell leukemias as well as many other types of human cancer. It is hypothesized that such progenitor cell cancers express oncoproteins that block differentiation. The E2A-Pbx1 oncoprotein that results from the t(1;19) chromosomal translocation of childhood pre-B cell acute lymphoblastic leukemia (pre-B ALL) is a fascinating oncoprotein because it blocks differentiation and physically interacts with homeodomain proteins, which are effectors of normal differentiation. These properties suggest the attractive hypothesis that E2A-Pbx1 blocks pre-B cell differentiation by interfering with the ability of other homeodomain proteins to orchestrate terminal B cell differentiation.


Acute Lymphoblastic Leukemia Homeobox Gene Normal Differentiation Cooperative Binding Homeodomain Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balling R, Mutter G, Gruss P, Kessel M (1989) Craniofacial abnormalities induced by ectopic expression of the homeobox gene Hox-1.1 in transgenic mice. Cell 58: 337 – 348PubMedCrossRefGoogle Scholar
  2. Burglin TR, Ruvkun G (1992) New motif in PBX genes. Nature genetics 1: 319 – 320PubMedCrossRefGoogle Scholar
  3. Carroll A, Crist W, Parmley R, Roper M, Cooper M, Finley W (1984) Pre-B cell leukemia associated with chromosome translocation 1;19. Blood 63: 721 – 724PubMedGoogle Scholar
  4. Chan S-K, Jaffe L, Capovilla M, Botas J, Mann R (1994) The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein. Cell 78: 603 – 615PubMedCrossRefGoogle Scholar
  5. Charite J, Graaff W, Shen S, Deschamps J (1994) Ectopic expression of Hoxb-8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 78: 589 – 601PubMedCrossRefGoogle Scholar
  6. Chisaka O, Capecchi M (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 350: 473 – 479PubMedCrossRefGoogle Scholar
  7. Chisaka O, Musci T, Capecchi M (1992) Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355: 516 – 520PubMedCrossRefGoogle Scholar
  8. Condie B, Capecchi M (1993) Mice homozygous for a targeted disruption of Hoxd-3 (Hox-4.1) exhibitanterior transformation of the first and second cervical vertebrae, the atlas and axis. Development 110: 579 – 595Google Scholar
  9. Crist W, Carroll A, Shuster J, Behm F, Whitehead M, Vietti T, Look A, Mahoney D, Ragab A, Pullen D, Land V (1990) Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): A pediatric oncology group study. Blood 76: 117 – 122PubMedGoogle Scholar
  10. Dedera DA, Waller EK, Lebrun DP, Sen-Majumdar A, Stevens ME, Barsh GS, Cleary ML (1993) Chimeric homeobox gene E2A-Pbx1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice. Cell 74: 833 – 843PubMedCrossRefGoogle Scholar
  11. Dolle P, Dierich A, LeMeur M, Schimmang T, Schuhbaur B, Chambón P, Duboule D (1993) Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 75: 431 – 441PubMedCrossRefGoogle Scholar
  12. Henthorn P, Kiledijan M, Kadesch T (1990) Two distinct transcription factors that binds the immunoglobulin enhancer mE5/kE2 motif. Science 247: 467 – 170PubMedCrossRefGoogle Scholar
  13. Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML (1991) The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 77: 687 – 693PubMedGoogle Scholar
  14. Jeannotte L, Lemieux M, Charron J, Poirier F, Robertson E (1993) Specification of axial identity in the mouse: role of the Hoxa-5(Hox1.3) gene. Genes Dev 7: 2085 - 2096PubMedCrossRefGoogle Scholar
  15. Jegalian B, De Robertis E (1992) Homeotic transformations in the mouse induced by overexpression of a human Hox3.3 transgene. Cell 71: 901 – 910PubMedCrossRefGoogle Scholar
  16. Johnson A (1992) A combinatorial regulatory circuit in budding yeast. Transcriptional Regulation 2: 975 – 1007Google Scholar
  17. Jones F, Prediger E, Bittner D, DeRobertis E, Edelman G (1992) Cell adhesion molecules as targets for Hox genes: Neural cell adhesion molecule promoter activity is modulated by cotransfection with Hox- 2.5 and -2.4. Proc Natl Acad Sci USA 89: 2086 – 2090PubMedCrossRefGoogle Scholar
  18. Kagawa N, Ogo A, Takahashi Y, Iwamatsu A, Waterman MR (1994) A cAMP-regulatory sequence (CRS1) of CYP17 is a cellular target for the homeodomain protein Pbx1. J Biol Chem 269: 18716 – 18719PubMedGoogle Scholar
  19. Kamps MP, Murre C, Sun X, Baltimore D (1990) A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation proteins in pre-B ALL. Cell 60: 547 – 555PubMedCrossRefGoogle Scholar
  20. Kamps MP, Look AT, Baltimore D (1991) The human t(1;19) translocation in pre-B ALL produces multiples nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev 5: 358 – 368PubMedCrossRefGoogle Scholar
  21. Kamps MP, Baltimore D (1993) E2A-PBX1, the t(1; 19) translocation protein of human pre-B cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol 13: 351 – 357PubMedGoogle Scholar
  22. Kamps MP, Wright DD (1994) Oncoprotein E2A-Pbx1 immortalizes cultured myeloid progenitors without abrogating their factor-dependence. Oncogene 9: 3159 – 3166PubMedGoogle Scholar
  23. Kamps MP, Wright DD, Lu Q (1995) DNA-binding by oncoprotein E2A-Pbx1 is important for blocking differentiation but dispensable for fibroblast transformation. Oncogene 12: 19 – 30Google Scholar
  24. Kessel M, Balling R, Gruss P (1990) Variations of cervical vertebrae after expression of a Hox 1.1 transgene in mice. Cell 61: 301 – 308PubMedCrossRefGoogle Scholar
  25. Knight S, Tamai K, Kosman D, Thiele D (1994) Identification and analysis of a saccharomyces cerevisiae copper homeostasis gene encoding a homeodomain protein. Mol Cell Biol 14: 7792 – 7804PubMedGoogle Scholar
  26. Knoepfler PS, Kamps MP (1995) The pentapeptide motif of Hox proteins is required for cooperative DNA-binding with Pbx1, physically contacts Pbx1 and enhances DNA-binding by Pbxl. Mo1 Cell Biol 15: 5811 – 5819Google Scholar
  27. Lai J-S, Herr W (1992) Ethidium bromide provides a simple tool for identifying genuine DNA-in- dependent protein associations. Proc Natl Acad Sci USA 89: 6958 – 6962PubMedCrossRefGoogle Scholar
  28. Lebrun DP, Cleary ML (1994) Fusion with E2A alters the transcriptional properties of the homeodomain protein PBX1 in t(1;19) leukemias. Oncogene 9: 1641 – 1647PubMedGoogle Scholar
  29. LeMouellic H, Lallemand V, Brulet P (1992) Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Cell 69: 251 – 264CrossRefGoogle Scholar
  30. Levine M, Hoey T (1988) Homeobox proteins as a sequence-specific transcription factors. Cell 55: 537 – 540PubMedCrossRefGoogle Scholar
  31. Lu Q, Wright DD, Kamps MP (1994) Fusion with E2A converts the Pbxl homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation. Mol Cell Biol 6: 3938 – 3948Google Scholar
  32. Lu Q, Knoepfler P, Scheele J, Wright DD, Kamps MP (1995) Both Pbx1 and E2A-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine Hox genes, some of which are themselves oncogenes. Mol Cell Biol 15: 3786 – 3795PubMedGoogle Scholar
  33. Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P (1991) Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66: 1105 – 1119PubMedCrossRefGoogle Scholar
  34. Lufkin T, Mark M, Hart C, Dolle P, LeMeur M, Chambon P (1992) Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 359: 835 - 841PubMedCrossRefGoogle Scholar
  35. Lund J, Ahlgren R, Wu D, Kagimoto M, Simpson E, Waterman M (1990) Transcriptional regulation of the bovine CYP17 (P-45017a) gene. J Biol Chem 265: 3304 – 3312PubMedGoogle Scholar
  36. Mak A, Johnson AD (1993) The carboxyl-terminal tail of the homeodomain protein α2 is required for function with a second homeodomain protein. Genes Dev 7: 1862 – 1870PubMedCrossRefGoogle Scholar
  37. Mathews C, Detmer K, Boncinelli E, Lawrence H, Largmen C (1991) Erythroid-restricted expression of homeobox genes of the human HOX 2 locus. Blood 78: 2248 – 2252PubMedGoogle Scholar
  38. McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68: 283 – 302PubMedCrossRefGoogle Scholar
  39. Maulbecker CC, Gruss P (1993) The oncogenic potential of deregulated homeobox genes. Cell Growth and Dif4: 431 – 141Google Scholar
  40. Mellentin JD, Murre C, Donlon TA, McCaw PS, Smith S, Caroli A, McDonald M, Baltimore D, Cleary M (1989) The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science 246: 379 – 382PubMedCrossRefGoogle Scholar
  41. Monica K, Galili N, Nourse J, Saltman D, Cleary ML (1991) PBX2 and PBX3, new homeobox genes with extensive homology to the human proto-oncogene PBX1 Mol Cell Biol 11: 6149 – 6157Google Scholar
  42. Monica K, LeBrun DP, Dedera D, Brown R, Cleary ML (1994) Transformation properties of the E2A- Pbx1 chimeric oncoprotein: Fusion with E2A is essential, but the Pbx1 homeodomain is dispensable. Mol Cell Biol 14: 8304 – 8314PubMedGoogle Scholar
  43. Morgan B, Izpisua-Belmonte J, Duboule D, Tabin C (1992) Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358: 236 – 239PubMedCrossRefGoogle Scholar
  44. Murre C, McCaw P, Baltimore D (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and Myc proteins. Cell 56: 777 – 783PubMedCrossRefGoogle Scholar
  45. Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD, Cleary ML (1990) Chromosomal translocation t(1; 19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60: 535 – 546PubMedCrossRefGoogle Scholar
  46. Numata S, Kato K, Horibe K (1993) New E2A-Pbx1 fusion transcript in a patient with t(1;19)(q23;p13) acute lymphoblastic leukemia. Leukemia 7: 1441 – 1444PubMedGoogle Scholar
  47. Perkins A, Cory S (1993) Conditional immortalization of mouse myelomonocytic, megakaryocytic and mast cell progenitors by the Hox-2.4 homeobox gene. EMBO J 12: 3835 – 3846PubMedGoogle Scholar
  48. Perkins A, Kongsuwan K, Visvader J, Adams JM, Cory S (1990) Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. Proc Natl Acad Sci 87: 8398 – 8402PubMedCrossRefGoogle Scholar
  49. Petrini M, Quaranta M, Testa U, Samoggia P, Tritarelli E, Care A, Cianetti L, Valtieri M, Barletta C, Peschle C (1992) Expression of selected human HOX-2 genes in B/T acute lymphoid leukemia and interleukin-2/interleukin-1 b-stimulated natural killer lymphocytes. Blood 80: 185 – 193PubMedGoogle Scholar
  50. Pollock R, Jay G, Bieberich C (1992) Altering the boundaries of Hox3.1 expression: evidence for antipodal gene regulation. Cell 71: 911 – 923PubMedCrossRefGoogle Scholar
  51. Privitera E, Kamps MP, Hayashi Y, Inaba T, Shapiro LH, Raimondi SC, Behm F, Hendershot L, Carroll AJ, Baltimore D, Look AT (1992) Different molecular consequences of the 1; 19 chromosomal translocations in childhood B-cell precursor acute lumphoblastic leukemia. Blood 79: 1781 – 1788PubMedGoogle Scholar
  52. Privitera E, Luciano A, Ronchetti D, Arico M, Santostasi T, Basso G, Biondi A (1994) Molecular variants of the 1; 19 chromosomal translocation in pediatric acute lymphoblastic leukemia (ALL). Leukemia 8: 554 – 559PubMedGoogle Scholar
  53. Qian Y, Otting G, Furukubo-Tokunaga K, Affolter M, Gehring W, Wuthrich K (1992) NMR structure determination reveals that the homeodomain is connected through a flexible linker to the main body in the Drosophila Antennapedia protein. Proc Natl Acad Sci USA 89: 10738 – 10742PubMedCrossRefGoogle Scholar
  54. Raimondi S, Behm F, Roberson P, Williams D, Pui C, Crist W, Look A, Rivera G (1990) Cytogenetics of pre-B acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol 8: 1380 – 1390PubMedGoogle Scholar
  55. Ramirez-Solis R, Zheng H, Whiting J, Krumlauf R, Bradley A (1993) Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell 73: 279 – 294PubMedCrossRefGoogle Scholar
  56. Rauskolb C, Peifer M, Wieschaus E (1993) Extradenticle, a regulator of homeotic gene activity, is a homologue of the homeobox-containing human proto-oncogene Pbx1. Cell 74: 1101 – 1112PubMedCrossRefGoogle Scholar
  57. Rauskolb C, Wieschaus E (1994) Coordinate regulation of downstream genes by extradenticle and the homeotic selector proteins. EMBO J 13: 3561 – 3569PubMedGoogle Scholar
  58. Scott MP, Tamkun JW, Hartzel GW III (1989) The structure and function of the homeodomain. Biochim Biophys Acta 989: 25 – 48PubMedGoogle Scholar
  59. Van Dijk MA, Voorhoeve P, Murre C (1993) Pbx1 is converted into a transcriptional activator upon acquiring the N-terminal region of E2A in pre-B cell acute lymphoblastoid leukemia. Proc Natl Acad Sci USA 90: 6061 – 6065PubMedCrossRefGoogle Scholar
  60. Van Dijk MA, Murre C (1994) Extradenticle raises the DNA-binding specificity of homeotic selector gene products. Cell 78: 617–624Google Scholar
  61. Vershon AK, Johnson AD (1993) A short, disordered protein region mediates interactions between thehomeodomain of the yeast α2 protein and the MCM1 protein. Cell 72: 105 – 112PubMedCrossRefGoogle Scholar
  62. Vogler L, Crist W, Boekman D, Pearl E, Lawton A, Cooper M (1978) A new phenotype of childhood lymphoblastic leukemia. N Eng J Med 298: 872–878Google Scholar
  63. Williams D, Look A, Meivin S, Roberson P, Dahl G, Flake T, Stass S (1984) New chromosomal translocations correlate with specific immunophenotypes of childhood acute lymphoblastic leukemia. Cell 36: 101 – 109PubMedCrossRefGoogle Scholar
  64. Wolberger C, Vershon A, Liu B, Johnson A, Pabo C (1991) Crystal structure of a MATa2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 67: 517 – 528PubMedCrossRefGoogle Scholar
  65. Wright CVE, Cho KWY, Oliver G, DeRobertis EM (1989) Vertebrate homeodomain proteins: families of region-specific transcription factors. Trends Biochem Sci 14: 52 – 56PubMedCrossRefGoogle Scholar
  66. Zappavigna V, Sartori D, Mavilio F (1994) Specificity of HOX protein function depends on DNA-protein and protein-protein interactions, both mediated by the horneo domain. Genes Dev 8: 732 – 744PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. P. Kamps
    • 1
  1. 1.Department of PathologyUniversity of California, San Diego, School of MedicineLa JollaUSA

Personalised recommendations