Skip to main content

Chromosome Translocation-Mediated Conversion of a Tumor Suppressor Gene into a Dominant Oncogene: Fusion of EWS1 to WT1 in Desmoplastic Small Round Cell Tumors

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 220))

Abstract

The preceding articles in this volume have provided a unique overview of genetic and biochemical mechanisms which underlie oncogenic conversion of transcription factor function. As is evident, many of the models have derived from the study of pediatric and adult leukemias. These studies have provided a paradigm for the emerging analyses of chromosomal translocations involving transcription factors in solid tumors. This is exemplified by the manuscript of Barr who examines the PAX3-FKHR fusion transcription factor whose mechanism likely involves increased activation of normal PAX3 target genes. A similar but probably not identical mechanistic theme is echoed by the EWS and TLS fusions described by Ron and May. Like PAX3-FKHR, the EWS/TLS fusions confer a novel activation domain to an otherwise unaltered DNA binding domain, thereby creating a dominant oncogene. Most remarkable is the diversity of DNA-binding domain types which are involved in EWS/TLS fusions and, concomitantly, the diversity of the disease processes initiated. This article will expand on this theme by describing a new member of the EWS/TLS family of oncogenes, namely EWS-WT1, which occurs in the solid tumor desmoplastic small round cell sarcoma (DSRCT). The EWS-WT1 fusion is unique in that its DNA binding domain is derived from the Wilms’ tumor-1 (WT1) tumor suppressor protein. This is one of the first examples of chromosomal-translocation-mediated fusion of a proto-oncogene (EWS) and a tumor suppressor gene (WT1) which creates a dominant oncogene. In order to understand the context of these findings, we will first provide brief reviews of the biology and genetics of WT1, EWS, and DSRCT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckwith JB, Kiviat NB, Bonadio JF (1990) Nephrogenic rests, nebroblastomatosis and the pathogenesis of Wilms’ tumor. Pediatr Pathol 10: 1 – 36

    Article  PubMed  CAS  Google Scholar 

  • Biegel JA, Conard K, Brooks JJ (1993) Translocation (11;22)(pl3;ql2): Primary change in intra-ab-dominal desmoplastic small round cell tumor. Genes Chromosome Cancer 7: 119 – 121

    Article  CAS  Google Scholar 

  • Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, Jones C, Housman DE (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60: 509 – 520

    Article  PubMed  CAS  Google Scholar 

  • Cook DM, Hinkes MT, Bernfield M, Rauscher III FJ (1996) Transcriptional activation of the Syndecan-1 promoter by the Wilms’ tumor protein WT1. Oncogene 13: 1789 – 1799

    PubMed  CAS  Google Scholar 

  • Coppes MJ, Campbell CE, Williams BRG (1993) The role of WT1 in Wilms’ tumorigenesis. FASEB J 7: 886 – 895

    PubMed  CAS  Google Scholar 

  • Crozat A, Aman P, Mandahl N, Ron D (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363: 640 – 644

    Article  PubMed  CAS  Google Scholar 

  • de Alava E, Ladanyi M, Rosai J, Gerald WL (1995) Detection of chimeric transcripts in desmoplastic small round cell tumor and related developmental tumors by reverse transcriptase polymerase chain reaction. 147: 1584 – 1590

    Google Scholar 

  • Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, de Jong P, Rouleau G, Aurias A, Thomas G (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumors. Nature 359: 162 – 165

    Article  PubMed  CAS  Google Scholar 

  • Delattre O, Zucman J, Melot T, Garau XS, Zucker J-M, Lenoir GM, Ambros PF, Sheer D, TurcCarel C, Triche TJ, Aurias A, Thomas G (1994) The Ewing family of tumors - a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331: 294 – 299

    Article  PubMed  CAS  Google Scholar 

  • Dey SR, Sukhatme VP, Roberts AB, Sporn MB, Rauscher FJ III, Kim S-J (1994) Repression of the transforming growth factor-beta 1 gene by the Wilms’ tumor suppressor WT1 gene product. Mol Endocrinol 8: 595 – 602

    Article  PubMed  CAS  Google Scholar 

  • Drummond IA, Madden SL, Rowher-Nutter P, Bell GL, Sukhatme VP, Rauscher III FJ (1992) Repression of the insulin-like growth factor-11 gene by the Wilms’ tumor suppressor WT1. Science 257: 674 – 678

    Article  PubMed  CAS  Google Scholar 

  • Drummond IA, Rupprecht HD, Rohwer-Nutter P, Lopez-Guisa JM, Madden SL, Rauscher III FJ, Sukhatme VP (1994) DNA recognition by variants of the Wilms’ tumor suppressor, WTl. Mol Cell Biol 14: 3800 – 3809

    PubMed  CAS  Google Scholar 

  • Gashler AL, Bonthron DT, Madden SL, Rauscher III FJ, Collins T, Sukhatme VP (1992) Human platelet-derived growth factor A chain is transcriptionally repressed by the Wilms’ tumor suppressor WT1. Proc Natl Acad Sci USA 89: 10984 – 10988

    Article  PubMed  CAS  Google Scholar 

  • Gerald WL, Miller HK, Battifora H, Miettinen M, Silva EG, Rosai J (1991) Intra-abdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am J Surg Pathol 15: 499 – 513

    Article  PubMed  CAS  Google Scholar 

  • Goodyer P, Dehbi M, Torban E, Bruening W, Pelletier J (1995) Repression of the retinoic acid receptor alpha gene by the Wilms’ tumor suppressor gene product, wt1. Oncogene 10: 1125 – 1129

    PubMed  CAS  Google Scholar 

  • Haber DA, Housman DE (1992) The genetics of Wilms’ tumor. Adv Cancer Res 59: 41 – 68

    Article  PubMed  CAS  Google Scholar 

  • Haber DA, Buckler AJ, Glaser T, Call KM, Pelletier J, Sohn RL, Douglass EC, Housman DE (1990) An internal deletion within in 11p13 zinc finger gene contributes to the development of Wilms’ tumor. Cell 61: 1257 – 1269

    Article  PubMed  CAS  Google Scholar 

  • Haber DA, Sohn RL, Buckler A J, Pelletier J, Call KM, Housman DE (1991) Alternative splicing and genomic structure of the Wilms’ tumor gene WTl. Proc Natl Acad Sci USA 88: 9618 – 9622

    Article  PubMed  CAS  Google Scholar 

  • Haber DA, Timmer HT, Pelletier J, Sharp PA, Housman DE (1992) A dominant mutation in Wilms’ tumor gene WT1 cooperatives with the viral oncogene EIA in transformation of primary kidney cells. Proc Natl Acad Sci USA 89: 6010 – 6014

    Article  PubMed  CAS  Google Scholar 

  • Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT, Shapiro DN (1995) A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 10: 1229 – 1234

    PubMed  CAS  Google Scholar 

  • Kaneko Y, Yoshida K, Handa M, Toyoda Y, Nishikira H, Tanaka Y, Sasaki Y, Ishida S, Higashino F, Fujinaga K (1996) Fusion of an ETS-family gene, E1AF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chrom Cancer 15: 115 – 121

    Article  PubMed  CAS  Google Scholar 

  • Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74: 679 – 691

    Article  PubMed  CAS  Google Scholar 

  • Labelle Y, Zucman J, Stenman G, Kindblom L-G, Knight J, Turc-Carel C, Dockhorn-Dworniczak B, Mandahl N, Desmaze C, Peter M, Aurias A, Delattre O, Thomas G (1995) Oncogenic conversion of a novel orphan nuclear receptor by chromosome translocation. Hum Mol Gen 4: 2219 – 2226

    Article  PubMed  CAS  Google Scholar 

  • Ladanyi M, Gerald W (1994) Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 54: 2837 – 2840

    PubMed  CAS  Google Scholar 

  • Larsson SH, Charlieu J-P, Miyagawa K, Engelkamp D, Rassoulzadegan M, Ross A, Cuzin F, van Heyningen V, Hastie ND (1995) Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing Cell 81: 391 – 401

    PubMed  CAS  Google Scholar 

  • Madden SL, Rauscher III FJ (1993) Positive and negative regulation of transcription and cell growth mediated by the EGR family of zinc finger gene products. In: Zinc-finger proteins in oncogenesis: DNA-binding and gene regulation. Ann NY Acad Sci 684: 75 – 84

    Google Scholar 

  • Madden SL, Cook DM, Morris JF, Gashler A, Sukhatme VP, Rauscher III FJ (1991) Transcriptional repression mediated by the WT1 Wilms’ tumor gene product. Science 253: 1550 – 1553

    Article  PubMed  CAS  Google Scholar 

  • Maheswaran S, Park S, Bernard A, Morris JF, Rauscher III FJ, Hill DE, Haber DA (1993) Interaction between the p53 and Wilms’ tumor (WT1) gene products: physical association and functional cooperation. Proc Natl Acad Sci USA 90: 5100 – 5104

    Article  PubMed  CAS  Google Scholar 

  • Ordonez NG, Zirkin R, Bloom RE (1989) Malignant small-cell epithelial tumor of the peritoneum co-expressing mesenchymal-type intermediate filaments. Am J Surg Pathol 13: 413^421

    Google Scholar 

  • Ordonez NG, El-Naggar AK, Ro JY, Silva EG, Mackay B (1993) Intra-abdominal desmoplastic small cell tumor: a light microscopic, immunocytochemical, ultrastructural, and flow cytometric study. Hum Pathol 24: 850 – 865

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J, Bruening W, Kashtan CE, Mauer SM, Manivel JC, Striegel JE, Houghton DC, Junien C, Habib R, Fouser L, Fine RN, Silverman RL, Haber DA, Housman D (1991) Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67: 437 – 447

    Article  PubMed  CAS  Google Scholar 

  • Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, Gosden C, Bard J, Buckler A, Pelletier J, Housman D, van Heyningen V, Hastie N (1990) The candidate Wilms’ tumor gene is involved in genitourinary development. Nature 346: 194 – 197

    Article  PubMed  CAS  Google Scholar 

  • Rabbits TH, Forster A, Larson R, Nathan P (1993) Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nature Genet 4: 175 – 180

    Article  Google Scholar 

  • Rauscher III FJ, Morris JF, Tournay OE, Cook DM, Curran T (1990) Binding of the Wilms’ tumor locus zinc finger protein in the EGR-1 consensus sequence. Science 250: 1259 – 1262

    Article  PubMed  CAS  Google Scholar 

  • Rauscher III FJ, Benjamin LE, Fredericks WJ, Morris JF (1994) Novel oncogenic mutations in the WT1 Wilms’ tumor suppressor gene. A recurrent t(ll;22) fuses the Ewings’ Sarcoma gene, EWS1 to WT1 in desmoplastic small round cell tumor. Gold Spring Harbor Symposium on Quantitative Biology. Cold Spring Harbor 59: 137 – 146

    CAS  Google Scholar 

  • Rodriguez E, Sreekantaiah C, Gerald W, Reuter VE, Motzer RJ, Chaganti RSK (1993) A recurring translocation t(11;22)(p12;q11.2) characterizes intra-abdominal desmoplastic small round-cell tumors. Cancer Genet Cytogenet 69: 17 – 21

    Article  PubMed  CAS  Google Scholar 

  • Ryan G, Steele-Perkins V, Morris JM, Rauscher III FJ, Dressler GR (1995) Repression of Pax-2 by WT1 during normal kidney development. Development 129: 867 – 875

    Google Scholar 

  • Sawyer JR, Tryka AF, Lewis JM (1992) A novel reciprocal chromosome translocation t(11;22)(p13;q12) in an intraabdominal desmoplastic small round-cell tumor. Am J Surg Pathol 16: 411 – 416

    Article  PubMed  CAS  Google Scholar 

  • Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sharma PM, Bowman M, Madden SL, Rauscher III FJ, Sukumar S (1994) RNA editing in the Wilms’ tumor susceptibility gene, WT1. Genes Dev 8: 720 – 731

    Article  PubMed  CAS  Google Scholar 

  • Shen WP, Towne B, Zadeh TM (1992) Cytogenetic abnormalities in an intra-abdominal desmoplastic small cell tumor. Cancer Genet Cytogenet 64: 189 – 191

    Article  PubMed  CAS  Google Scholar 

  • Sorenson PHB, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT (1994) A second Ewing’s sarcoma translocation t(21;22) fuses the EWS gene to another ETS-family transcription factor, ERG. Nature Genet 6: 146 – 151

    Article  Google Scholar 

  • Sukhatme VP (1990) Early transcriptional events in cell growth: the Egr family. J Am Soc Nephrol 1: 859 – 866

    PubMed  CAS  Google Scholar 

  • Urano F, Umezawa A, Hong W, Kikuchi H, Hata J-i (1996) A novel chimera gene between EWSand EIA-F, encoding the adenovirus EIA enhancer-binding protein, in extraosseous Ewing’s Sarcoma. 219: 608 – 61

    CAS  Google Scholar 

  • Wang ZY, Madden SL, Deuel TF, Rauscher III FJ (1992) The human platelet-derived growth factor A-chain (PDGF-A) gene is a target for repression by the WT1 Wilms’ tumor protein. J Biol Chem 267: 21999 – 22002

    PubMed  CAS  Google Scholar 

  • Werner H, Rauscher III FJ, Sukhatme VP, Drummond IA, Roberts Jr CT, LeRoith D (1994) Transcriptional repression of the insulin-like growth factor I receptor (IGF-I-R) gene by the tumor suppressor WT1 involves binding to sequences upstream and downstream of the IGF-I-R transcription start site. J Biol Chem 269: 12577 – 12582

    PubMed  CAS  Google Scholar 

  • Zucman J, Delattre O, Desmaze C, Epstein A, Stenman G, Speleman F, Fletchers CDM, Aurias A, Thomas G (1993) EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nature Genet 4: 341 – 345

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rauscher, F.J. (1997). Chromosome Translocation-Mediated Conversion of a Tumor Suppressor Gene into a Dominant Oncogene: Fusion of EWS1 to WT1 in Desmoplastic Small Round Cell Tumors. In: Rauscher, F.J., Vogt, P.K. (eds) Chromosomal Translocations and Oncogenic Transcription Factors. Current Topics in Microbiology and Immunology, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60479-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60479-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64424-5

  • Online ISBN: 978-3-642-60479-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics