Advertisement

Foci of Altered Hepatocytes, Mouse

  • Boris H. Ruebner
  • Peter Bannasch
  • David E. Hinton
  • John M. Cullen
  • Jerrold M. Ward
Part of the Monographs on Pathology of Laboratory Animals book series (LABORATORY)

Abstract

Foci of altered hepatocytes in the mouse liver are usually invisible with the naked eye. However, they may occasionally be recognizable grossly on careful examination, as small, whitish spots, 1–2 mm in diameter, on the liver surface.

Synonyms

Hepatocellular foci hyperplastic foci preneoplastic foci enzyme-altered foci phenotypically altered foci 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson M, Stanley L, Devereux T, Reynolds S, Maronpot R (1992) Oncogenes in mouse liver tumors. Prog Clin Biol Res 376:187–201PubMedGoogle Scholar
  2. Anthony PP, Vogel CL, Barker LF (1973) Liver cell dysplasia: a premalignant condition. J Clin Pathol 26:217–223PubMedCrossRefGoogle Scholar
  3. Bannasch P, Müller HA (1964) Lichtmikroskopische Untersuchungen Über die Wirkung von N-Nitrosomorpholin auf die Leber von Ratte und Maus. Arzneimittelforschung 14:805–814PubMedGoogle Scholar
  4. Bannasch P, Zerban H (1992) Predictive value of hepatic preneoplastic lesions as indicators of carcinogenic response. In: Vainio H, Magee PN, McGregor DB, McMichael AJ (eds) Mechanisms of carcinogenesis risk identification. IARC Scientific Publications, LyonGoogle Scholar
  5. Becker FF (1984) The direct and indirect effects of promoters may depend upon the nature of the initiated cell. In: Fujiki H, Hecker E, Moore RE, Sugimura T, Weinstein IB (eds) Cellular interactions by environmental tumor promoters. VNU Science, Tokyo, pp 349–359Google Scholar
  6. Becker FF (1985) Tumor phenotype and susceptibility to progression as an expression of subpopulations of initiated murine cells. Cancer Res 45:768–773PubMedGoogle Scholar
  7. Bolender RP (1993) Current methods in quantitative morphology. QM 2000 Version 2.0. Lecture notes and software for computational biology. University of Washington, SeattleGoogle Scholar
  8. Buchmann A, Bauer-Hofmann R, Mahr J, Drinkwater NR, Schwartz M (1991) Mutational activation of the C-Ha-ras gene in liver tumors of different rodent strains. Correlation with susceptibility to hepatocarcinogenesis. Proc Natl Acad Sci USA 88:911–915PubMedCrossRefGoogle Scholar
  9. Cullen JM, Sandgren EP, Brinster RL, Maronpot RR (1993) Histologic characterization of hepatic carcinogenesis in transgenic mice expressing SV40 T antigens. Vet Pathol 30:111–118PubMedCrossRefGoogle Scholar
  10. Delia Porta GD, Dragani TA, Manenti G (1987) Two-stage liver carcinogenesis in the mouse. Toxicol Pathol 15:229–233CrossRefGoogle Scholar
  11. Devereux TR, Foley JF, Maronpot RR, Kari F, Anderson MW (1993) Ras proto-oncogene activation in liver and lung tumors from B6C3F1 mice exposed chronically to methylene chloride. Carcinogenesis 14:795–801PubMedCrossRefGoogle Scholar
  12. Dragan YP, Pitot HC (1992) The role of the stages of initiation and promotion in phenotype diversity during hepatocarcinogenesis in the rat. Carcinogenesis 13:739–750PubMedCrossRefGoogle Scholar
  13. Enzmann H, Edler L, Bannasch P (1987) Simple elementary method for the quantification of focal liver lesions induced by carcinogens. Carcinogenesis 8:231–235PubMedCrossRefGoogle Scholar
  14. Frith CH, Ward JM (1980) A morphologic classification of proliferative and neoplastic hepatic lesions in mice. J Environ Pathol Toxicol 3:329–351Google Scholar
  15. Frith CH, Ward JM (1988) Color atlas of neoplastic and nonneoplastic lesions in aging mice. Elsevier, Amsterdam, p 109Google Scholar
  16. Geller SA, Nichols WS, Kim S, Tolmachoff T, Lee S, Dycaico MJ, Felts KA, Sorge JA (1994) Hepatocarcinogenesis is the sequel to hepatitis in Z2 alpha-1-antitrypsin transgenic mice: Histopathological and DNA ploidy studies. Hepatology 19:389–397PubMedCrossRefGoogle Scholar
  17. Goodman DG, Maronpot PR, Newberne PM, Popp JA, Squire RA (1994) Proliferative and selected other lesions of the liver in rats. In: Streett CS, Burek JD, Hardisty JF, Garner FM, Leininger JR, Pletscher JM, Moch RW (eds) Guides for toxicologic pathology. STP/ARP/AFIP, Washington, pp GI-5, 1–24Google Scholar
  18. Gössner VW, Friedrich-Freksa H (1964) Histochemische Untersuchungen über die glucose-6-phosphatase in der Rattenleber wahrend der Kanzerisierung durch Nitrosamine. Z. Naturforsch 19:862–864Google Scholar
  19. Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263PubMedCrossRefGoogle Scholar
  20. Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B (1988) The new stereological tools: disector, fractionater, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96:857–881PubMedCrossRefGoogle Scholar
  21. Hanigan MH, Winkler WL, Drinkwater NR (1993) Induction of three histochemically distinct populations of hepatic foci in C57BL/67 mice. Carcinogenesis 14:1035–1040PubMedCrossRefGoogle Scholar
  22. Ito N, Hamanouchi M, Sugihara S, Shirai T, Tsuda H (1976) Reversibility and irreversibility of liver tumors in mice induced by the alpha-isomer of 1,2,3,4,5,6 hexachlorocyclohexane. Cancer Res 36:2227–2234PubMedGoogle Scholar
  23. Jang JJ, Weghorst CM, Henneman JR, Devor DE, Ward JM (1992) Progressive atypia in spontaneous and N-nitrosodiethylamine induced hepatocellular adenomas of C3H/HeNCr mice. Carcinogenesis 13:1541–1547PubMedCrossRefGoogle Scholar
  24. Klaunig JE, Pereira MA, Ruch RJ, Weghorst CM (1988) Dose-response relationship of diethylnitrosamine-initiated tumors in neonatal balb/c mice: effect of phenobarbital promotion. Toxicol Pathol 16:381–385PubMedCrossRefGoogle Scholar
  25. Koen H, Pugh TD, Nychka D, Goldfarb S (1983a) Presence of alpha-fetoprotein-positive cells in hepatocellular foci and microcarcinomas induced by single injections of diethylnitrosamine in infant mice. Cancer Res 43:702–708PubMedGoogle Scholar
  26. Koen H, Pugh, TD, Goldfarb S (1983b) Hepatocarcinogenesis in the mouse. Combined morphologic-stereologic studies. Am J Pathol 112:89–100PubMedGoogle Scholar
  27. Kyriazis AP, Vesselinovitch SD (1973) Transplantability and biological behavior of mouse liver tumors induced by ethylnitrosourea. Cancer Res 33:332–338PubMedGoogle Scholar
  28. Lipsky MM, Hinton DE, Goldblatt PJ, Klaunig JE, Trump BF (1979) Iron negative foci and nodules in safrole-exposed mouse liver made siderotic by iron-dextran injection. Pathol Res Pract 164:178–185PubMedGoogle Scholar
  29. Lipsky MM, Hinton DE, Klaunig JE, Trump BF (1981) Biology of hepatocellular neoplasia in the mouse. III. Electron microscopy of safrole-induced hepatocellular adenomas and hepatocellular carcinomas. J Natl Cancer Inst 67:393–405PubMedGoogle Scholar
  30. Lipsky MM, Tanner DC, Hinton DE, Trump BF (1984) Reversibility, persistence, and progression of safrole-induced mouse liver lesions following cessation of exposure. In: Popp JA (ed) Mouse liver neoplasia: current perspectives. Hemisphere, Washington, pp 161–177Google Scholar
  31. aronpot RR, Haseman JK, Boorman GA, Eustis SE, Rao GN, Huff JE (1987) Liver lesions in B6C3F1 mice: the National Toxicology Program, experience and position. Arch Toxicol Suppl 10:10–26PubMedGoogle Scholar
  32. Matsuno Y, Hirohashi S, Furuya S, Sakamoto M, Mukai K, Shimosato Y (1990) Heterogeneity of proliferative activity in nodule-in-nodule lesions of small hepatocellular carcinoma. Jpn J Cancer Res 81:1137–1140PubMedGoogle Scholar
  33. Moore MA, Nakagawa K, Satoh K, Ishikawa T, Sato K (1987) Single GST-P positive liver cells - putative initiated hepatocytes. Carcinogenesis 8:483–486PubMedCrossRefGoogle Scholar
  34. Moore MR, Drinkwater NR, Miller EC, Miller JA, Pitot HC (1981)Quantitative analysis of the time dependent development of glucose-6-phosphatase deficient foci in the livers of mice treated neonatally with diethylnitrosamine. Cancer Res 41:1585–1593PubMedGoogle Scholar
  35. Nakanuma Y, Terada T, Terasaki S, Ueda K, and others (1990) Atypical adenomatous hyperplasia in liver cirrhosis: lowgrade hepatocellular carcinoma or borderline lesions? Histopathology 17:27–35PubMedCrossRefGoogle Scholar
  36. Pasquinelli C, Bhavani K, Chisari FV (1992) Multiple oncogenes and tumor suppressor genes are structurally and functionally intact during hepatocarcinogenesis in hepatitis B virus transgenic mice. Cancer Research 52:2823–2829PubMedGoogle Scholar
  37. Paul D (1993) Hepatocarcinogenesis in transgenic mice. Joint conference of the European Association for Cancer Research and Abteilung fur experimentelle Krebsforschung, HeidelbergGoogle Scholar
  38. Pitot HC (1990) Altered hepatic foci: their role in murine hepatocarcinogenesis. Annu Rev Pharmacol Toxicol 30:465–500PubMedCrossRefGoogle Scholar
  39. Pugh TD, Goldfarb S (1978) Quantitative histochemical and autoradiographic studies of hepatocarcinogenesis in rats fed 2-acetylaminofluorene followed by phenobarbitol. Cancer Res 38:4450–4457PubMedGoogle Scholar
  40. Pugh TD, King JH, Koen H, Nychka D, Chover J, Wahba G, He Y, Goldfarb S (1983) Reliable stereological method for estimating the number of microscopic hepatocellular foci from their transections. Cancer Res 43:1261–1268PubMedGoogle Scholar
  41. Rabes HM, Bucher T, Hartmann A, Linke I, Dunnwald M (1982)Clonal growth of carcinogen-induced enzyme-deficient preneoplastic cell populations in mouse liver. Cancer Res 42:3220–3227PubMedGoogle Scholar
  42. Reuber MD (1975) Histogenesis of hyperplasia and carcinomas of the liver arising around central veins in mice ingesting chlorinated hydrocarbons. Pathol Microbiol 43: 287–298Google Scholar
  43. Ruebner BH, Gershwin ME, French SW, Meierhenry E, Dunn P, Hsieh LS (1984a) Mouse hepatic neoplasia: differences among strains and carcinogens. In: Popp JA (ed) Mouse liver neoplasia: current perspectives. Hemisphere, Washington, pp 115–143Google Scholar
  44. Ruebner BH, Gershwin ME, Meierhenry EF, Hsieh LS, Dunn PL (1984b) Irreversibility of liver tumors in C3H mice. J Natl Cancer Inst 73:493–498PubMedGoogle Scholar
  45. Sakamoto M, Hirohashi S, Shimosato Y (1991) Early stages of multistep hepatocarcinogenesis: adenomatous hyperplasia and early hepatocellular carcinoma. Hum Pathol 22:172–178PubMedCrossRefGoogle Scholar
  46. Siglin JC, Weghorst CM, Klaunig JE (1991) Role of hepatocyte proliferation in a-hexachlorocyclohexane and phénobarbital tumor promotion in B6C3F1 mice. Prog Clin Biol Res 369:407–416PubMedGoogle Scholar
  47. Squire RA, Levitt MN (1975) Report of a workshop on classification of specific hepatocellular lesions in rats. Cancer Res 35:3214–3223PubMedGoogle Scholar
  48. Takagi H, Sharp R, Takayama H, Anver MR, Ward JM, Merlino G (1993) Collaboration between growth factors and diverse chemical carcinogens in hepatocarcinogenesis of transforming growth factor alpha transgenic mice. Cancer Research 53:4329–4336PubMedGoogle Scholar
  49. Tamano S, Merlino GT, Ward JM (1994) Rapid development of hepatic tumors in transforming growth factor alpha (TGF-a) transgenic mice associated with increased cell proliferation in precancerous hepatocellular lesions initiated by N-nitrosodiethylamine and promoted by phénobarbital. Carcinogenesis 15:1791–1798PubMedCrossRefGoogle Scholar
  50. Tsuji S, Ogawa K, Takasaka H, Sonoda T, Mori M (1988) Clonal origin of gamma-glutamyl transpeptidase-positive hepatic lesions induced by initiation-promotion of ornithine carbamoyltransferase mosaic mice. Jpn J Cancer Res 79:148–151PubMedGoogle Scholar
  51. Vesselinovitch SD, Hacker HJ, Bannasch P (1985) Histochemical characterization of focal hepatic lesions induced by single diethylnitrosamine treatment in infant mice. Cancer Res 45:2774–2780PubMedGoogle Scholar
  52. Ward JM (1984) Morphology of potential preneoplastic hepatocyte lesions and liver tumors in mice and a comparison with other species. In: Popp JA (ed) Mouse liver neoplasia. Current perspectives. Hemisphere, Washington, pp 1–26Google Scholar
  53. Ward JM, Bernai E, Buratto B, Goodman DG, Strandberg JD, Schueler R (1979) Histopathology of neoplastic and nonneoplastic hepatic lesions in mice fed diets containing tetrachlorvinphos. J Natl Cancer Inst 63:111–118PubMedGoogle Scholar
  54. Ward JM, Rice JM, Creasia D, Lynch P, Riggs C (1983) Dissimilar patterns of promotion by di (2-ethylhexyl) phthalate and phénobarbital of hepatocellular neoplasia initiated by diethylnitrosamine in B6C3F1 mice. Carcinogenesis 4:1021–1029PubMedCrossRefGoogle Scholar
  55. Ward JM, Lynch P, Riggs C (1988) Rapid development of hepatocellular neoplasms in aging male C3H/HeNCr mice given phénobarbital. Cancer Lett 39:9–18PubMedCrossRefGoogle Scholar
  56. Ward JM, Diwan BA, Lubet RA, Henneman JR, Devor DE (1990) Liver tumor promoters and other mouse liver carcinogens. In: Stevenson DE, McClain R, Popp JA, Slaga TJ, Ward JM, Pitot HC (eds) Mouse liver carcinogenesis: mechanisms and species comparisons. Wiley-Liss, New York, pp 85–108Google Scholar
  57. Weber E, Moore MA, Bannasch P (1988) Enzyme histochemical and morphological phenotype of amphophilic foci and amphophilic/tigroid cell adenomas in rat liver after combined treatment with dehydroepiandrosterone and N-nitrosomorpholine. Carcinogenesis 9:1049–1054PubMedCrossRefGoogle Scholar
  58. Williams GM, Hirota N, Rice JM (1979) The resistance of spontaneous mouse hepatocellular neoplasms to iron accumulation during rapid iron loading by parenteral administration and their transplantability. Am J Pathol 94:65–74PubMedGoogle Scholar
  59. Williams GM, Oamori T, Katayama S, Rice JM (1980) Alteration by phénobarbital of membrane-associated enzymes including gamma glutamyl transpeptidase in mouse liver neoplasms. Carcinogenesis 1:813–818PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Boris H. Ruebner
  • Peter Bannasch
  • David E. Hinton
  • John M. Cullen
  • Jerrold M. Ward

There are no affiliations available

Personalised recommendations