Skip to main content

Inflammation in Acute Coronary Syndromes

  • Conference paper
The Role of Immune Mechanisms in Cardiovascular Disease

Abstract

Coronary atherosclerosis without acute thrombosis is generally a benign disease that is asymptomatic or presents as chronic stable angina. The great majority of patients can be treated pharmacologically. For those with intractable angina, percutaneous and surgical revascularization are available with high initial success and good long-term prognosis. Acute manifestations of coronary atherosclerosis either unstable angina, acute myocardial infarction, or sudden cardiac death share a common pathophysiologic phenomenon: acute coronary thrombosis. This life threatening complication occurs usually at the site of plaque fissure or rupture. Several studies have shown that plaque rupture plays a key role in the pathophysiology of acute coronary syndromes [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes: parts 1 and 2. N Engl J Med 326: 242–250, 310–318

    Article  PubMed  CAS  Google Scholar 

  2. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92: 657–671

    PubMed  CAS  Google Scholar 

  3. Kragel AH, Reddy SG, Wittes JT, Roberts WC (1989) Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarction and in sudden coronary death. Circulation 80: 1747–1756

    Article  PubMed  CAS  Google Scholar 

  4. Gertz SD, Roberts WC (1990) Hemodynamic shear force in rupture of coronary arterial atherosclerotic plaques. Am J Cardiol 66: 1368–1372

    Article  PubMed  CAS  Google Scholar 

  5. Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demmer LL (1993) Bone morphometric protein expression in human atherosclerotic lesions. J Clin Invest 91: 1800–1809

    Article  PubMed  CAS  Google Scholar 

  6. Falk E: Coronary thrombosis (1991) Pathogenesis and clinical manifestations. Am J Cardiol 68: 28B–35B

    Article  PubMed  CAS  Google Scholar 

  7. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69: 377–381

    Article  PubMed  CAS  Google Scholar 

  8. Gertz SD, Roberts EC (1990) Hemodynamic shear force in rupture of coronary arterial atherosclerotic plaques. Am J Cardiol 66: 1368–1372

    Article  PubMed  CAS  Google Scholar 

  9. Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT (1994) Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb 14: 230–234

    Article  PubMed  CAS  Google Scholar 

  10. Fuster V (1994) Lewis A Conner Memorial Lecture: Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 90: 2126–2146

    PubMed  CAS  Google Scholar 

  11. Loree HM, Kamm RD, Stringfellow RG, Lee RT (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71: 850–858

    PubMed  CAS  Google Scholar 

  12. Richardson PD, Davies MJ, Born GVR (1989) Influence of plaque configuration and stress distribution on Assuring of coronary atherosclerotic plaques. Lancet 2: 941–944

    Article  PubMed  CAS  Google Scholar 

  13. Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ (1991) Structuredependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83: 1764–1770

    PubMed  CAS  Google Scholar 

  14. Burleigh MC, Briggs AD, Lendon CL, Davis MJ, Born GVR, Richardson P (1992) Collagen types I and II, collagen content, GAGs and mechanical strength of human atherosclerotic plaque caps: span-wise variations. Atherosclerosis 96: 71–81

    Article  PubMed  CAS  Google Scholar 

  15. Lendon CL, Davis MJ, Born GVR, Richardson PD (1991) Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87: 87–90

    Article  PubMed  CAS  Google Scholar 

  16. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87: 1179–1187

    PubMed  CAS  Google Scholar 

  17. Alexander RW (1994) Inflammation and coronary artery disease. N Engl J Med 331: 468–469

    Article  PubMed  CAS  Google Scholar 

  18. van der Wal AC, Becker AE, van der Loos CM, Das PK (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89: 36–44

    PubMed  Google Scholar 

  19. Fernández-Ortiz A, Badimón JJ, Falk E, Fuster V, Meyer B, Mailhac A, Weng D, Shah PK, Badimón L (1994) Characterization of the relative thrombogenicity of atherosclerotic plaque components. J Am Coll Cardiol 23: 1562–1569

    Article  PubMed  Google Scholar 

  20. Dinerman JL, Mehta JL, Saldeen TGP, Emerson S, Davda R, Davinson A (1990) Increased neutrophil elastase release in unstable angina pectoris and acute myocardial infarction. J Am Coll Cardiol 15: 1559–1563

    Article  PubMed  CAS  Google Scholar 

  21. Liuzzo G, Biasucci LM, Gallimore R, Grillo R, Rebuzzi A, Pepys MB, Masseri A (1994) The prognostic value of c-reactive protein and serum amiloid A protein in severe unstable angina. New Engl J Med 331: 417–424

    Article  PubMed  CAS  Google Scholar 

  22. Davies MJ, Gordon JL, Gearing AJ, Pigott R, Woolf N, Katz D, Kyriakopoulos A (1993) The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM and E-Selectin in human atherosclerosis. Am J Pathol 171: 223–229

    CAS  Google Scholar 

  23. Mazzone A, De Servi S, Riceuvuti G, Mazzucchrlli I, Pasotti F, Specchia G, Notario A (1993) Increased expression of neutrophil and monocyte adhesion molecules in unstable coronary disease. Circulation 22: 358–363

    Google Scholar 

  24. Yla-Herttuala S, Lipton BA, Rosenfeld ME, Sarkioja T, Yoshimura T, Leonard EJ, Witztum JL, Steinberg D (1991) Expression of monocyte chemoattractant protein-1 in macrophage rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 88: 5252–5256

    Article  PubMed  CAS  Google Scholar 

  25. Yu X, Dluz S, Grsves DT, Zhang L, Antoniades HN, Hollander W, Prusty S, Valente AJ, Schwartz CJ, Sonenshein GE (1992) Elevated expression of monocyte chemoattractant protein 1 by vascular smooth muscle cells in hypercholesterolemic primates. Proc Natl Acad Sci USA 89: 6953–6957

    Article  PubMed  CAS  Google Scholar 

  26. Takeya M, Yoshimura T, Leonard EJ, Takahashi K (1993) Detection of monocyte chemoattractant protein-1 monoclonal antibody. Hum Pathol 24: 534–539

    Article  PubMed  CAS  Google Scholar 

  27. Koch AE, Kunkel SL, Pearce WH, Shah MR, Parikh D, Evanoff HL, Haines GK, Burdick MD, Strieter RM (1993) Enhanced production of the chemoattractant cytokines inter-leukin-8 and monocyte chemoattractant protein-1 in human aortic aneurysms. Am J Pathol 142: 1423–1431

    PubMed  CAS  Google Scholar 

  28. Nelken NA, Coughlin SR, Gordon D, Wilcox JN (1991) Monocyte chemoattractant pro-tein-1 in human atherosclerotic plaques. J Clin Invest 88: 1121–1127

    Article  PubMed  CAS  Google Scholar 

  29. Barath P, Fishbein MC, Cao J, Berenson J, Heifant RH, Forrester JS (1990) Detection and localization of tumor necrosis factor in human atheroma. Am J Cardiol 65: 297–302

    Article  PubMed  CAS  Google Scholar 

  30. Tipping PG, Hancock WW (1993) Production of tumor necrosis factor and interleukin-1 by macrophages from human atherosclerotic plaques. Am J Pathol 141: 1721–1728

    Google Scholar 

  31. Moyer CF, Sajuthi D, Tulli H, Williams JK (1991) Synthesis of IL-1 alpha and IL-1 beta by arterial atherosclerosis. Am J Pathol 138: 951–960

    PubMed  CAS  Google Scholar 

  32. Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P (1992) Macrophage-colony stimulatin factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J pathol 140: 301–316

    PubMed  CAS  Google Scholar 

  33. Rosenfeld ME, Yla-Herttuala S, Lipton BA, Ord VA, Witztum JL, Steinberg D (1992) Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and man. Am J Pathol 140: 291–300

    PubMed  CAS  Google Scholar 

  34. Raines EW, Rosenfeld ME, Ross R (1996) The role of macrophages. In: Fuster V, Topol E, Ross R (eds) Atherosclerotic and coronary artery disease. Lippincott-Raven. Philadelphia, pp 539–555

    Google Scholar 

  35. Emtman ML, Ballantyne CM: Inflammation in acute coronary syndromes (1993) Circulation 22: 800–803

    Google Scholar 

  36. Quinn MT, Parthasarathy S, Fong L, Steinberg D (1987) Oxidatively modified low density lipoproteins: A potential role in the recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA 84: 2995–2998

    Article  PubMed  CAS  Google Scholar 

  37. Kume N, Cybulsky MI, Gimbrone MA Jr (1992) Lysophosphatidylcholine, a component of atherogenic lipoproteins induces mononuclear leukocyte adhesion molecules in cultured human rabbit endothelial cells. J Clin Invest 90: 1138–1144

    Article  PubMed  CAS  Google Scholar 

  38. van Furth R (1989) Origen and turnover of monocytes and macrophages. Curr Top Pathol 79: 125–150

    PubMed  Google Scholar 

  39. Adams DO, Hamilton TA (1984) The cell biology of macrophage activation. Ann Rev Immunol 2: 283–318

    Article  CAS  Google Scholar 

  40. Magnan DF, Wahl SM (1991) Differential regulation of human monocyte programmed cell death (apoptosis) by chemotactic factors and cytokines. J Immunol 147: 3408–3412

    Google Scholar 

  41. van Furth R (1988) Phagocytic cells: Development and distribution of mononuclear phagocytes in normal steady state and inflammation. In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation: basic principles and clinical correlates. Raven, New York, pp 218–295

    Google Scholar 

  42. Elliot DE, Boros DL (1984) Schistosome egg antigen(s) presentation and regulatory activity by macrophages isolated from vigorous or immunomodulated liver granulomas of Schistosoma mansoni-infected mice. J Immunol 132: 1506–1510

    Google Scholar 

  43. Kreipe H, Radzun HJ, Rudolph P, Barth J, Hansmann ML, Heidorn K, Parawaresch MR. Multinucleated giant cells generated in vivo (1988) Terminally differentiated macrophages with down regulated c-fos expression. Am J Pathol 130: 232–243

    PubMed  CAS  Google Scholar 

  44. Munn DH, Beali AC, Song D, Wrenn RW, Throckmorton DC (1995) Activation induced apoptosis in human macrophages: Developmental regulation of a novel cell death pathway by macrophage colony-stimulation factor and interferon gamma. J Exp Med 181: 127–136

    Article  PubMed  CAS  Google Scholar 

  45. Williams GT, Smith CA, Spoonser E, Dexter TM, Taylor DR (1990) Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343: 76–79

    Article  PubMed  CAS  Google Scholar 

  46. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT (1994) Macrophage infiltration in acute coronary syndromes: implications for plaque rupture. Circulation 90: 775–778

    PubMed  CAS  Google Scholar 

  47. Woessner JF (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB 5: 2145–2154

    CAS  Google Scholar 

  48. Dollery AM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77: 863–868

    PubMed  CAS  Google Scholar 

  49. Chin JR, Murphy G, Werb Z (1985) Stromelysin, a connective tissue-degrading me-talloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. J Biol Chem 260: 12367–12376

    PubMed  CAS  Google Scholar 

  50. Sperti G, van Leeuwen RTJ, Quax PHA, Maseri A, Kluft C (1992) Cultured rat aortic vascular smooth muscle cells digest naturally produced extracellular matrix: involvement of plasminogen-dependent and plasminogen-independent pathways. Circ Res 71: 385–392

    PubMed  CAS  Google Scholar 

  51. Nagase H, Enghild JJ, Suzuki K, Salvesen G (1990) Stepwise activation mechanisms of teh precursor of matrix metalloproteinase 3 (stromelysin) by proteases and (4-aminophenyl) mercuric acetate. Biochem 29: 5783–5789

    Article  CAS  Google Scholar 

  52. Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336

    Article  PubMed  CAS  Google Scholar 

  53. Esdtreicher A, Wohlwend A, Berlin D, Schleuning WD, Vassalli JD (1989) Characterization of the cellular binding site for the urokinase-type plasminogen activator. J Biol Chem 264: 1180–1189

    Google Scholar 

  54. Murphy G, Reynolds JJ (1993) Extracellular matrix degeneration. In: Royce PM, Stein-mann B (eds) Connective tissue and its heritable disorders. Wiley-Liss, New York, pp 287–316

    Google Scholar 

  55. Leco KJ, Khokha R, Pavloff N, Hawkes SP, Edwards DR (1994) Tissue inhibitors of metalloproteinases-3 (TIMP-3) is an extracellular matrix associated protein with a distinctive pattern of expression in mouse cells. J Biol Chem 269: 9352–9360

    PubMed  CAS  Google Scholar 

  56. Denhardt DT, Feng B, Edwards DR, Cocuzzi ET, Malyankar UM (1993) Tissue inhibitor of metalloproteinases (TIMP aka EPA): structure, control of expression and biological functions. Pharmacol Ther 59: 329–341

    Article  PubMed  CAS  Google Scholar 

  57. Weber BHF, Vogt G, Pruett RC, Stöhr H, Felbor U (1994) Mutations in the tissue inhibitor of metalloproteinase-3 (TIMP-3) in patients with Sorsby’s fundus dystrophy. Nat Genet 8: 352–355

    Article  PubMed  CAS  Google Scholar 

  58. Galis ZS, Sukhova GK, Kranzhöfer R, Clark S, Libby P (1995) Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 92: 402–406

    Article  PubMed  CAS  Google Scholar 

  59. Shah PK, Falk E, Badimón JJ, Fernández-Ortiz A, Mailhac A, Levy G, Fallon JT, Regnstrom J, Fuster V (1995) Human monocyte-derived macrophage induce collagen breakdown in fibrous cap of atherosclerotic plaques: potential role of matrix degrading metalloproteinasas and implications for plaque rupture. Circulation 92: 1565–1569

    PubMed  CAS  Google Scholar 

  60. Henney AM, Wakeley PR, Davies MJ, Foster K, Hembry R, Murphy G, Humphries S (1991) Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA 88: 8154–8158

    Article  PubMed  CAS  Google Scholar 

  61. Brown DL, Hibbs MS, Kearney M, Topol EJ, Loushin C, Isner JM (1995) Expression and cellular localization of 92 kDa gelatinase in coronary lesions of patients with unstable angina. Circulation 91: 2125–2131

    PubMed  CAS  Google Scholar 

  62. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix me-talloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94: 2493–2503

    Article  PubMed  CAS  Google Scholar 

  63. Nikkari ST, O’Brien KO, Ferguson M, Hatsukami T, Welgus HG, Alpers CE, Clowes AW (1995) Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 92: 1393–1398

    PubMed  CAS  Google Scholar 

  64. Davies MJ (1995) Stability and Instability: two faces of coronary atherosclerosis. Paul Dudley White International Lecture. Circulation 92: 1–C

    Google Scholar 

  65. Saarien J, Kalkkinen N, Welgus HG, Kovanen PT (1994) Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase. J Biol Chem 269: 18134–18140

    Google Scholar 

  66. Gruber BL, Marchese MJ, Suzuki K, Schwartz LB, Okada Y, Nagase H, Ramamurthy NS (1989) Synovial procollagenase activation by human mast cell tryptase: dependence upon matrix metalloproteinase 3 activation. J Clin Invest 84: 1657–1662

    Article  PubMed  CAS  Google Scholar 

  67. Kovanen PT, Kaartinen M, Paavonen T (1995) Infiltrated of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92: 1084–1088

    PubMed  CAS  Google Scholar 

  68. Libby P (1995) Molecular bases of the acute coronary syndromes. Circulation 91: 2844–2850

    PubMed  CAS  Google Scholar 

  69. Letini R, Bianchi M, Correale E, Dinarello CA, Fantuzzi G, Fresco C, Maggioni AP, Mengozzi M, Romano S, Shapiro L (1994) Cytokines in acute myocardial infarction: selective increase in circulating tumor necrosis factor, its soluble receptor, and inter-leukin-1 receptor antagonist. J Cardiovasc Pharmacol 23: 1–6

    Google Scholar 

  70. Blum A, Sclarovsky S, Rehavia E, Shohat B (1994) Levels of T-lymphocyte subpopulations, interleukin-1 beta, and soluble interleukin-2 receptor in acute myocardial infarction. Am Heart J 127: 1226–1230

    Article  PubMed  CAS  Google Scholar 

  71. Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 11: 1223–1230

    Article  PubMed  CAS  Google Scholar 

  72. Hansson GK, Holm J, Jonasson L (1989) Detection of activated T lymphocytes in the human atherosclerotic plaque. Am J Pathol 135: 169–175

    PubMed  CAS  Google Scholar 

  73. Warner SJC, Friedman GB, Libby P (1989) Regulation of major histocompatibility gene expression in cultured human vascular smooth muscle cells. Arteriosclerosis 9: 279–288

    Article  PubMed  CAS  Google Scholar 

  74. Rekther M, Zhang K, Narayanan A, Phan S, Schork M, Gordon D (1993) Type I collagen gene expression in human atherosclerotic localization to specific plaque regions. Am J Pathol 143: 1634–1648

    Google Scholar 

  75. Hansson GK, Jonasson L, Holm J, Clowes MK, Clowes A (1988) Gamma interferon regulates vascular smooth muscle proliferation and Ia expression in vivo and in vitro. Circ Res 63: 712–719

    PubMed  CAS  Google Scholar 

  76. Warner SJC, Friedman GB, Libby P (1989) Immune interferon inhibits proliferation and induces 2′-5′-oligoadenylate synthetase gene expression in human vascular smooth muscle cells. J Clin Invest 83: 1174–1182

    Article  PubMed  CAS  Google Scholar 

  77. Benditt EP, Barrett T, McDougall JK (1983) Viruses in the etiology of atherosclerosis. Proc Natl Acad Sci USA 80: 6386–6389

    Article  PubMed  CAS  Google Scholar 

  78. Hendrix MGR, Salimans MMM, van Boven CPA, Bruggeman CA (1990) High prevalence of latently present cytomegalovirusin arterial walls of patients suffering from grade III atherosclerosis. Am J Pathol 136: 23–28

    PubMed  CAS  Google Scholar 

  79. Sapn AHM, van Boven CPA, Bruggeman CPA (1989) The effect of cytomegalovirus infection in the adherence of polimorphonuclear leukocytes to endothelial cells. Eur J Clin Invest 19: 542–548

    Article  Google Scholar 

  80. Visser MR, Tracy PB, Vercellotti GM, Goodman JL, White JG, Jacob HS (1988) Enhanced thrombin generation and platelet binding on herpes simplex virus infected endothelium. Proc Natl Acad Sci USA 85: 8227–8230

    Article  PubMed  CAS  Google Scholar 

  81. Lemström KB, Bruning JH, Bruggeman CA, Lautenschlager IT, Häyry PJ (1993) Cytomegalovirus infection enhances smooth muscle cell proliferation and intimai thickening of rat allografts. J Clin Invest 92: 549–558

    Article  PubMed  Google Scholar 

  82. Speir E, Modali R, Huang ES, Leon MB, Shawl F, Finkel T, Epstein SE (1994) Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 265: 391–394

    Article  PubMed  CAS  Google Scholar 

  83. Kol A, Sperti G, Shani J, Schulhoff N, van de Greef W, Landini MP, La Placa M, Maseri A, Crea F (1995) Cytomegalovirus replication is not a cause of instability in unstable angina. Circulation 91: 1910–1913

    PubMed  CAS  Google Scholar 

  84. Shor A, Kuo C-C, Patton DL (1992) Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. S Afr Med J 82: 158–161

    PubMed  CAS  Google Scholar 

  85. Kuo C-C, Shor A, Campbell LA, Fukushi H, Patton DL, Grayston JT (1993) Demonstration of Chlaamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis 167: 841–849

    Article  PubMed  CAS  Google Scholar 

  86. Campbell LA, O’brien ER, Cappuccio AL, Kuo C-C, Wang S-P, Stewart D, Patton DL, Cummings PK, Grayston JT (1995) Detection of Chlamydia pneumoniae (TWAR) in human atherectomy tissues. J Infect Dis 172: 585–588

    Article  PubMed  CAS  Google Scholar 

  87. Grayston JT, Kuo CC, Coulson AS, Campbell LA, Lawrence RD, Lee MJ, Strandness ED, Wang SP (1995) Chlamydia pneumoniae (TWAR) in atherosclerosis of the carotid artery. Circulation 92: 3397–3400

    PubMed  CAS  Google Scholar 

  88. Saikku P, Leinonen M, Tenkanen L, Linnanmaki E, Ekman MR, Manninen V, Manttari M, Frick MH, Huttunen JK (1992) Chronic Chlamydia pneumoniae infection as a risk factor for coronary heart disease in the Helsinki Heart Study. Ann Intern Med 116: 273–278

    PubMed  CAS  Google Scholar 

  89. Hansson GK, Libby P (1996) The role of lymphocyte In: Fuster V, Topol EJ, Ross R (eds) Atherosclerosis and coronary artery disease. Lippincott-Raven. Philadelphia, New York, pp 557–568

    Google Scholar 

  90. Bergmark C, Wu R, de Faire U, Lefvert AK, Swedenborg J (1995) Patients with early-onset peripheral vascular disease have increased levels of autoantibodies to oxidized LDL. Arterioscler Thromb Vasc Biol 15: 441–445

    Article  PubMed  CAS  Google Scholar 

  91. Bellomo G, Maggi E, Poli M, Agosta FG, Bollati P, Finardi G (1995) Autoantibodies against oxidatively modified low-density lipoproteins in NIDDM. Diabetes 44: 60–66

    Article  PubMed  CAS  Google Scholar 

  92. Schumacher M, Eber B, Tatzber F, Kaufmann P, Halwachs G, Fruhwald FM, Zweiker R, Esterbauer H, Klein W (1995) Transient reduction of autoantibodies against oxidized LDL in acute myocardial infarction. Free Radical Biol Med 18: 1087–1091

    Article  CAS  Google Scholar 

  93. Xu Q, Willeit J, Waldenberger FR, Weimann S, Wick G (1993) Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 142: 1927–1937

    PubMed  Google Scholar 

  94. Wick G, Kleindienst R, Schett G, Amberger A, Xu Q (1995) The role of heat shock protein 65/60 in the pathogenesis of atherosclerosis. Intern Arch Allerg Immunol 107: 130–131

    Article  CAS  Google Scholar 

  95. Kleindienst R, Xu Q, Willeit J, Waldenberger FR, Weiman S, Wick G (1995) Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 142: 1927–1937

    Google Scholar 

  96. Xu Q, Willeit J, Marosi M, Klindienst R, Oberhollenzer F, Kiechl S, Stulnig T, Luef G, Wick G (1993) Association of serum antibodies to heat shock protein 65 with carotid atherosclerosis. Lancet 341: 255–259

    Article  PubMed  CAS  Google Scholar 

  97. Birnie DH, Hood S, Holmes E, Hillis W (1994) Anti-heat shock protein 65 titers in acute myocardial infarction. Lancet 344: 1443

    Article  PubMed  CAS  Google Scholar 

  98. Badimón L, Badimón JJ, Turitto VT, Vallabhajosula S, Fuster V (1988) Platelet cthrombus formation on collagen type I: A model of deep vessel wall injury — influence of blood rheology, von Willebrant factor, and blood coagulation. Circulation 78: 1431–1442

    Article  PubMed  Google Scholar 

  99. Badimón L, Badimón JJ, Galvez A, Chesebro JT, Fuster V (1986) Influence of arterial damage and wall shear rate on platelet deposition: ex vivo study in a swine model. Arteriosclerosis 6: 312–320

    Article  PubMed  Google Scholar 

  100. Ip JH, Fuster V, Badimón L, Taubman M, Badimón JJ, Chesebro JH (1990) Syndromes of accelerated atherosclerosis: Role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 15: 1667–1687

    Article  PubMed  CAS  Google Scholar 

  101. Meyer BJ, Badimón JJ, Mailhac A, Fernández-Ortiz A, Chesebro JT, Fuster V, Badimón L (1994) Inhibition of growth of thrombus on fresh mural thrombus. Targeting optimal therapy. Circulation 90: 2432–2438

    PubMed  CAS  Google Scholar 

  102. Falk E (1992) Why does plaque rupture?. Circulation 86: III30–42

    Google Scholar 

  103. Leathman EW, Bath PM, Tooze JA, Camm AJ (1995) Increased monocyte tissue factor expression in coronary artery disease. Br Heart J 73: 10–13

    Google Scholar 

  104. Lo SK, Cheung A, Zheng Q, Silverstein RL (1995) Induction of tissue factor on monocytes by adhesion to endothelial cells. J Immunol 154: 4768–4777

    PubMed  CAS  Google Scholar 

  105. Ruf W, Edgington TS (1994) Structural biology of tissue factor, the initiator of throm-bogenesis in vivo. FASEB J 8: 385–390

    PubMed  CAS  Google Scholar 

  106. Carson SD, Brozna JP (1993) The role of tissue factor in the production of thrombin. Blood Coagul Fibrinol 4: 281–292

    Article  CAS  Google Scholar 

  107. Edwards RL, Rickles FR (1992) The role of leukocytes in the activation of blood coagulation. Semin Hematol 29: 202–212

    PubMed  CAS  Google Scholar 

  108. Drake TA, Ruf W, Morrisey JH, Edgington TS (1989) Functional tissue factor is entirely cell surface expressed on lipopolysaccharide-stimulated human blood monocytes and constitutively tissue factor-producing neoplastic cell line. J Cell Biol 109: 389–395

    Article  PubMed  CAS  Google Scholar 

  109. Taubman MB, Marmur JD, Rosenfield C-L, Guha A, Nichtberger S, Nemerson Y (1993) Agonist-mediated tissue factor expression in cultured vascular smooth muscle cells: role of Ca2+ mobilization and protein kinase C activation. J Clin Invest 91: 547–552

    Article  PubMed  CAS  Google Scholar 

  110. Wilcox JN, Smith KM, Schwartz SM, Gordon D (1989) Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 86: 2839–2843

    Article  PubMed  CAS  Google Scholar 

  111. Annex BH, Denning SM, Keith MC, Sketch MH, Stack RS, Morrisey JH, Peters KG (1995) Differential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation 91: 619–622

    PubMed  CAS  Google Scholar 

  112. Thiruvikraman SV, Guha A, Roboz J, Taubman MB, Nemerson Y, Fallon JT (1996) In situ localization of tissue factor in human atherosclerotic plaques by binding of digoxigenin labelled factors VIIa and X. Lab Invest (in press)

    Google Scholar 

  113. Toschi V, Fallon JT, Gallo R, Lettino M, Fernández-Ortiz A, Badimón L, Chesebro JT, Nemerson Y, Fuster V, Badimón JJ (1995) Tissue factor predicts thrombogenicity of human atherosclerotic plaque components. Circulation I-112 (abstract)

    Google Scholar 

  114. Nemerson Y (1992) The tissue factor pathway of blood coagulation. Semin Hematol 29: 170–176

    PubMed  CAS  Google Scholar 

  115. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Science 362: 801–809

    CAS  Google Scholar 

  116. Moreno PR, Bernardi VH, López-Cuellar J, Palacios IF, Gold HK, Nemerson Y, Fuster V, Fallon JT (1996) Macrophages, smooth muscle cells and tissue factor in unstable angina: implications for cell mediated thrombogenicity in acute coronary syndromes. Circulation (in press)

    Google Scholar 

  117. Ball RY, Stowers EC, Burton JH, Cary NRB, Skepper JN, Mitchinson MJ (1995) Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma. Atherosclerosis 114: 45–54

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreno, P.R., Fallon, J.T. (1997). Inflammation in Acute Coronary Syndromes. In: Schultheiss, HP., Schwimmbeck, P. (eds) The Role of Immune Mechanisms in Cardiovascular Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60463-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60463-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61358-9

  • Online ISBN: 978-3-642-60463-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics