Skip to main content

Molecular Mechanisms Regulating the Early Development of the Vertebrate Nervous System

  • Chapter
Drug Toxicity in Embryonic Development I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 124 / 1))

  • 205 Accesses

Abstract

The vertebrate nervous system arises from a pseudostratified epithelium, the neural plate, that is formed from the dorsal ectoderm of the embryo. Development of the nervous system is marked by a number of morphological events that involve first the induction of “neural tissue”, and then the patterning and refinement of cell fate within this neural tissue. The end result of these morphogenetic events is the generation of topologically defined classes of neurons each with distinct patterns of interconnections and neurotransmitter phenotypes, together with various glial cell types and other accessory cells such as the ependymal cells that line the meninges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R (1995) A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem 270: 8730–8738

    Article  PubMed  CAS  Google Scholar 

  • Bastian H, Gruss P (1990) A murine even-skipped homologue, Evx 1, is expressed during early embryogenesis and neurogenesis in a biphasic manner. EMBO J 9: 1839–1852

    PubMed  CAS  Google Scholar 

  • Conlon RA, Rossant J (1992) Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116: 357–368

    PubMed  CAS  Google Scholar 

  • Cordes SP, Barsh GS (1994) The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79: 1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Cox WG, Hemmati-Brivanlou A (1995) Caudalization of neural fate by tissue recombination and bFGF. Development 121: 4349–4358

    PubMed  CAS  Google Scholar 

  • Davis CA, Holmyard DP, Millen KJ, Joyner AL (1991) Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum. Development 111: 287–298

    PubMed  CAS  Google Scholar 

  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Möhler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75: 1417–1430

    Article  PubMed  CAS  Google Scholar 

  • Ericson I, Thor S, Edlund T, Jessell TM, Yamada T (1992) Early stages of motor neuron differentiation revealed by expression of homeobox gene Islet-1. Science 256: 1555–1560

    Article  PubMed  CAS  Google Scholar 

  • Fainsod A, Steinbeisser H, DeRobertis EM (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. Embo J 13: 5015–5025

    PubMed  CAS  Google Scholar 

  • Francois V, Solloway M, O’Neill JW, Emery J, Bier E (1994) Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev 8: 2602–2616

    Article  PubMed  CAS  Google Scholar 

  • Godsave SF, Slack JM (1989) Clonal analysis of mesoderm induction in Xenopus laevis. Dev Biol 134: 486–490

    Article  PubMed  CAS  Google Scholar 

  • Goulding MD, Lumsden A, Gruss P (1993) Signals from the notochord and floor plate regulate the region-specific expression of two Pax genes in the developing spinal cord. Development 117: 1001–1016

    PubMed  CAS  Google Scholar 

  • Goulding M, Lumsden A, Paquette AJ (1994) Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120: 957–971

    PubMed  CAS  Google Scholar 

  • Groves AK, George KM, Tissier-Seta JP, Engel JD, Brunet JF, Anderson DJ (1995) Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons. Development 121: 887–901

    PubMed  CAS  Google Scholar 

  • Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaetescute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75: 463–76

    Article  PubMed  CAS  Google Scholar 

  • Guthrie S, Lumsden A (1991) Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112: 221–229

    PubMed  CAS  Google Scholar 

  • Guthrie S, Muchamore I, Kuroiwa A, Marshall H, Krumlauf R, Lumsden A (1992) Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions. Nature 356: 157–159

    Article  PubMed  CAS  Google Scholar 

  • Hanks M, Wurst W, Anson-Cartwright L, Auerbach AB, Joyner AL (1995) Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science 269: 679–682

    Article  PubMed  CAS  Google Scholar 

  • Hawley SH, Wünnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, Cho KW (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 9: 2923–2935

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283–295

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Clarke JD, Vargesson N, Jowett T, Holder N (1995) Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech Dev 50: 3–16

    Article  PubMed  CAS  Google Scholar 

  • Holley SA, Jackson PD, Sasai Y, Lu B, DeRobertis EM, Hoffmann FM, Ferguson EL (1995) A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. 376: 249–253

    Google Scholar 

  • Holtfreter J (1934) Arch Exp Zellforsch 15: 281–301

    Google Scholar 

  • Hynes M, Poulsen K, Tessier-Lavigne M, Rosenthal A (1995) Control of neuronal diversity by the floor plate: contact-mediated induction of midbrain dopaminergic neurons. Cell 80: 95–101

    Article  PubMed  CAS  Google Scholar 

  • Jarman AP, Grau Y, Jan LY, Jan YN (1993) atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73: 1307–1321

    Article  PubMed  CAS  Google Scholar 

  • Joyner AL, Herrup K, Auerbach BA, Davis CA, Rossant J (1991) Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 251: 1239–1243

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Mark M, Chambon P (1995) Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83: 859–869

    Article  PubMed  CAS  Google Scholar 

  • Kessel M (1993) Reversal of axonal pathways from rhombomere 3 correlates with extra Hox expression domains. 10: 379–393

    CAS  Google Scholar 

  • Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67: 89–104

    Article  PubMed  CAS  Google Scholar 

  • Krauss S, Maden M, Holder N, Wilson SW (1992) Zebrafish pax [b] is involved in the formation of the midbrain-hindbrain boundary. Nature 360: 87–89

    Article  PubMed  CAS  Google Scholar 

  • Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262: 713–718

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268: 836–844

    Article  PubMed  CAS  Google Scholar 

  • Liem Jr. KF, Tremml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm Cell 82: 969–979

    Article  PubMed  CAS  Google Scholar 

  • Lo LC, Johnson JE, Wuenschell CW, Saito T, Anderson DJ (1991) Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 5: 1524–1537

    Article  PubMed  CAS  Google Scholar 

  • Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P (1991) Disruption of the Hox- 1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66: 1105–1119

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. Trends Neurosci 13: 329–335

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83: 841–50

    Article  PubMed  CAS  Google Scholar 

  • Marshall H, Nonchev S, Sham MH, Muchamore I, Lumsden A, Krumlauf R (1992) Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 360: 737–741

    Article  PubMed  CAS  Google Scholar 

  • Marti E, Bumcrot DA, Takada R, McMahon AP (1995) Requirement of 19K form of sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375: 322–325

    Article  PubMed  CAS  Google Scholar 

  • McKay I J, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lewis J (1994) The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120: 2199–2211

    PubMed  CAS  Google Scholar 

  • McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required fordevelopment of a large region of the mouse brain. Cell 62: 1073–1085

    Article  PubMed  CAS  Google Scholar 

  • McMahon AP, Joyner AL, Bradley A, McMahon J A (1992) The midbrain-hindbrain phenotype of Wnt-1/Wnt-1-mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69: 581–595

    Article  PubMed  CAS  Google Scholar 

  • Moury JD, Jacobson AG (1990) The origins of neural crest cells in the axolotl. Dev Biol 141: 243–253

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Nigtevecht GV (1954) Neural activation and transformation in explants of competent ectoderm under the influence of fragments of anterior notochord in urodeles. J Embryol Exp Morphol 2: 175–193

    Google Scholar 

  • Pannese M, Polo C, Andreazzoli M, Vignali R, Kablar B, Barsacchi G, Boncinelli E (1995) The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121: 707–720

    PubMed  CAS  Google Scholar 

  • Papalopulu N, Clarke JD, Bradley L, Wilkinson D, Krumlauf R, Holder N (1991) Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 113: 1145–1158

    PubMed  CAS  Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989) Expression of engrailed protein in arthopods, annelids and chordates. Cell 58: 955–968

    Article  PubMed  CAS  Google Scholar 

  • Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM (1996) Requirement for LIM homeobox gene Isll in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84: 309–320

    Article  PubMed  CAS  Google Scholar 

  • Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz-i-Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM et al. (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76: 761–775

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De-Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–790

    Article  PubMed  CAS  Google Scholar 

  • Selleck MAJ, Bronner-Fraser M (1995) Origins of the avian neural crest: the role of neural plate-epidermal interactions. Development 121: 525–538

    PubMed  CAS  Google Scholar 

  • Shimizu C, Akazawa C, Nakanishi S, Kageyama R (1995) MATH-2, a mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal, is specifically expressed in the nervous system. Eur J Biochem 229: 239–248

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Maunoury S, Topilko P, Scitandou T, Levi G, Cohen-Tannoudji M, Pournin S, Babinet C, Charnay P (1993) Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75: 1199–1214

    Article  PubMed  CAS  Google Scholar 

  • Simon H, Hornbruch A, Lumsden A (1995) Independent assignment of anteroposterior and dorsoventral positional values in the developing chick hindbrain. Current Biol 5: 205–214

    Article  CAS  Google Scholar 

  • Sundin O, Eichele G (1992) An early marker of axial pattern in the chick embryo and its respecification by retinoic acid. Development 114: 841–852

    PubMed  CAS  Google Scholar 

  • Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346: 847–850

    Article  PubMed  CAS  Google Scholar 

  • Thor S, Ericson J, Brannstrom T, Edlund T (1991) The homeodomain LIM protein Isl-lis expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 7: 881–889

    Article  PubMed  CAS  Google Scholar 

  • Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121: 4057–4065

    PubMed  CAS  Google Scholar 

  • Urbanek P, Wang ZQ, Fetka I, Wagner EF, Busslinger M (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79: 901–912

    Article  PubMed  CAS  Google Scholar 

  • van Straaten HW, Hekking JW (1991) Development of floor plate, neurons and axonal outgrowth pattern in the early spinal cord of the notochord-deficient chick embryo. Anat Embryol Berl 184: 55–63

    Article  PubMed  Google Scholar 

  • Watterson RL (1965) Structure and mitotic behaviour of the early neural tube. In: DeHaan RL, Ursprung H (eds) Organogenesis. Holt, Rinehart and Winston, New York, pp 129–159

    Google Scholar 

  • Wilkinson DG, Bailes JA, McMahon AP (1987) Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell 50: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-l mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120: 2065–2075

    PubMed  CAS  Google Scholar 

  • Xu Q, Alldus G, Holder N, Wilkinson DG (1995) Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development 121: 4005–4016

    PubMed  CAS  Google Scholar 

  • Yamada T, Placzek M, Tanaka H, Dodd J, Jessell TM (1991) Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64: 635–647

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Pfaff SL, Edlund T, Jessell TM (1993) Control of cell pattern in the neural tube: motor neuron induction by diffusible factors from notochord and floor plate. Cell 73: 673–686

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Emmons SW (1995) A transcription factor controlling development of peripheral sense organs in C. elegans. Nature 373: 74–78

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burrill, J.D., Saueressig, H., Goulding, M. (1997). Molecular Mechanisms Regulating the Early Development of the Vertebrate Nervous System. In: Kavlock, R.J., Daston, G.P. (eds) Drug Toxicity in Embryonic Development I. Handbook of Experimental Pharmacology, vol 124 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60445-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60445-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64408-5

  • Online ISBN: 978-3-642-60445-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics