New Aspects of Peritoneal Pathology

  • M. Morganti
  • L. Tietze
  • B. Amo-Takyi
  • K. Tory
  • D. Budianto
  • U. Henze
  • C. Mittermayer
Conference paper

Abstract

The peritoneum is a membranous structure consisting of a single layer of mesothelial cells and the subserosal stroma. The visceral peritoneum covers the surface of various organs and continues to the abdominal wall as the parietal peritoneum. This membrane creates a gliding surface, regulates the traffic of molecules and fluid, and plays an important role in some pathological conditions, particularly formation of fibrous adhesions, peritonitis, and implantation of metastatic cancer. The fibrinolytic and antifibrinolytic properties of mesothelial cells are partly regulated by cytokines. Tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β 1 and interleukin (IL)-1β in particular cause a shift toward antifibrinolytic activity. This may contribute to the decreased fibrinolytic activity of serosal biopsies during peritonitis. This observation and its relationship to formation of fibrous adhesion are discussed in detail in Chap. 10 of this volume. The inflammatory response of this membrane is regulated by expression of a variety of cytokines [1]. The cell-cell interaction is partly mediated by expression of inducible and constitutive cell adhesion molecules [2]. The early inflammatory response with edema, vasodilation, and hyperalgesia is probably augmented by mesothelial prostaglandin production (see Chap. 12, this volume). In this chapter, we will focus on the developmental and morphological aspects of the peritoneal membrane and discuss pathological aspects of primary and secondary neoplasms of the peritoneal cavity.

Keywords

Surfactant Estrogen Adenocarcinoma Aldehyde Hexagonal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jonijc N, Peri G, Bernasconi S, Scacca FL, Calotta F, Pelicci PG, Lanfrancone L, Mantovani A (1992) Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells. J Exp Med 176: 1165–1174CrossRefGoogle Scholar
  2. 2.
    Hinsberg VWM, Kooistra T, Scheffer A, van Bockel JH, Goos NP (1990) Characterization and fibrinolytic properties of human omental tissue mesothelial cells. Comparison with endothelial cells. Blood 75: 1490–1497Google Scholar
  3. 3.
    Thomas NW (1987) Embryology and structure of the mesothelium. In: Jones JSP (ed) Pathology of the mesothelium. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. 4.
    Whitaker D, Papadimitriou J (1985) Mesothelial healing: morphological and kinetic investigations. J Pathol 145: 159–175PubMedCrossRefGoogle Scholar
  5. 5.
    Craig JR, Hart WR (1979) Extragenital adenomatoid tumor. Evidence for the mesothelial origin. Cancer 433: 1678–1679Google Scholar
  6. 6.
    Blaustein A, Lee H (1979) Surface cells of the ovary and pelvic peritoneum: a histochemical and ultrastructural comparison. Gynecol Oncol 8: 34–43PubMedCrossRefGoogle Scholar
  7. 7.
    LaRocca P, Rheinwald JG (1984) Coexpression of simple epithelial keratins and vimentin by human mesothelium and mesothelioma in vivo and in culture. Cancer Res 44: 2991–2999Google Scholar
  8. 8.
    Pötzsch B, Grulich-Henn J, Rössing R, Wille D, Berghaus GM (1990) Identification of endothelial and mesothelial cells in human omental tissue and in omentum derived cultured cells by specific cell markers. Lab Invest 63: 841–852PubMedGoogle Scholar
  9. 9.
    Hills BA (1992) Graphite like lubrification of mesothelium by oligolamellar pleural surfactant. J Appl Phys 73: 1034–1039Google Scholar
  10. 10.
    Dobbie JW, Zaki M, Wilson L (1988) From philosopher to fish: the comparative anatomy of the peritoneal cavity as an excretory organ and its significance for peritoneal dialysis in man. Perit Dial Int 8–3Google Scholar
  11. 11.
    Dobbie JW, Zaki M, Wilson L (1981) Ultrastructural studies on the peritoneum with special reference to chronic ambultory peritoneal dialysis. Scott Med J 26: 223–231Google Scholar
  12. 12.
    Watters WB, Buck RC (1972) Scanning electron microscopy of mesothelial regeneration in rats. Lab Invest 26: 604–609PubMedGoogle Scholar
  13. 13.
    Ryan GB, Groberty J, Majno G (1973) Mesothelial injury and recovery. Am J Pathol 71: 93102Google Scholar
  14. 14.
    Raftery AT (1973) Regeneration of parietal and visceral peritoneum: a light microscopical study. Br J Surg 60: 293–299PubMedCrossRefGoogle Scholar
  15. 15.
    Wagner JC, Johnson NF, Brown DG, Wagner MMF (1982) Histology and ultrastructure of serially transplanted rat mesothelium and mesothelioma in vivo and in culture. Cancer Res 46: 294–299Google Scholar
  16. 16.
    Clement PB, Young H, Scully RE (1994) Peritoneum. In: Stemberg S (ed) Diagnostical surgical pathology. Raven, New YorkGoogle Scholar
  17. 17.
    Bercovici B, Gallily R (1978) The cytology of the human peritoneal fluid. Acta Cytol 22: 124Google Scholar
  18. 18.
    Von Haam E (1977) Cytology of transudates and exudates. Monogr Clin Cytol 5: 3–17Google Scholar
  19. 19.
    Yoshioka M, Yasuda M, Tahira K, Murae M, Nakabayshi Y, Fujiya S, Isonishi S, Terashima Y, Hachiya S (1986) Experimental study of the mechanism of peritoneal dissemination with special references to scanning electron microscopic observations. Nippon Sanka Fujinka Gakkai Zasshi 38: 1683–1691PubMedGoogle Scholar
  20. 20.
    Cannistra A, Kansa GS, Niloff J, DeFranzo B, Kim Y, Ottesmeier C (1993) Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H. Cancer Res 53: 3830–3838PubMedGoogle Scholar
  21. 21.
    Morganti M, Hauptmann S, Tietze L, Carpi A, Sagripanti A, Henze U, Mittermayer C (1995) Macrophages marker PGM1 and vWF expression by mesothelial cells in mixed cultures with neoplastic cell lines. Int J Med 3: 19–24Google Scholar
  22. 22.
    Morganti M, Hauptmann S, Budianto D, Carpi A, Sagripanti A, Henze U, Mittermayer C (1995) Expression of t-PA, PAI-1 and vWF in the supernatant of endothelial and mesothelial cultures in response to the seeding with HRT-18 tumor cells. XV European Congress of Pathology Poster, Falconer Center, Copenhagen, 3–8 Sept, 1995Google Scholar
  23. 23.
    Asao T, Nagamachi Y, Morinaga N, Tachenoshita S, Yazawa S (1995) Fucosyltransferase of peritoneum contributed to the adhesion of cancer cells to the mesothelium. Cancer 15: 1539–1544CrossRefGoogle Scholar
  24. 24.
    Bosman FT, Havenith M, Cleutjens JP (1985) Basement membranes in cancer. Ultrastruct Pathol 8: 291–304PubMedCrossRefGoogle Scholar
  25. 25.
    Nagy JA, Morgan H, Kemp T, Manseau J, Dvorak AM, Dvorak HF (1995) Pathogenesis of ascites tumor growth: angiogenesisis, vascular remodeling and stroma formation in the peritoneal lining. Cancer Res 55: 376–385PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Morganti
  • L. Tietze
  • B. Amo-Takyi
  • K. Tory
  • D. Budianto
  • U. Henze
  • C. Mittermayer

There are no affiliations available

Personalised recommendations