Skip to main content

Zusammenfassung

Die wichtigste Methode zur Sicherung der Diagnose von Hauttumoren oder ihren Vorstufen ist die histopathologische Untersuchung. Die Dermatoskopie kann zur Beurteilung von pigmentierten Hauttumoren, die Sonographie zur Bewertung von vergrößerten Lymphknoten und zur Messung der Tumordicke herangezogen werden. Wir möchten ein zusätzliches Verfahren, die photodynamische Diagnostik (PDD), vorstellen, die sich aus der photodynamischen Therapie (PDT) entwickelte und die es erlaubt, neoplastisches und entzündliches Gewebe von der umliegenden gesunden Haut durch die spezifische rote Fluoreszenz der gebildeten Porphyrine abzugrenzen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abels C, Heil P, Dellian M, Kuhnle GEH, Baumgartner R, Goetz AE (1994) In vivo kinetics and spectra of 5-aminolevulinic acid induced fluorescence in an amelanotic melanoma of the hamster. Br J Cancer 70: 826–833.

    Article  PubMed  CAS  Google Scholar 

  2. Al-Laith M, Matthews EK (1994) Calcium-dependent photodynamic action of di- and tetrasulphonated aluminium phthalocyanine on normal and tumour-derived rat pancreatic exocrine cells. Br J Cancer 70: 893–899.

    Article  PubMed  CAS  Google Scholar 

  3. Auler H, Banzer G (1942) Untersuchungen über die Rolle der Porphyrine bei geschwulstkranken Menschen und Tieren. Z Krebsforschung 53: 65–68.

    Article  CAS  Google Scholar 

  4. Baumgartner R, Fuchs N, Jocham D, Stepp H, Unsöld E (1992) Photokinetics of fluorescent polyporphyrin photofrin II in normal rat tissue and rat bladder tumor. Photochem Photobiol 55: 569–574.

    Article  PubMed  CAS  Google Scholar 

  5. Becker-Wegerich P, Fritsch C, Neuse W, Schulte KW, Ruzicka T, Goerz G (1995) Effektive Kryochirurgie oberflächlicher Hauttumoren unter photodynamischer Diagnostik. H+G 70: 891–895.

    Google Scholar 

  6. Bedwell J, MacRobert AJ, Phillips D, Bown SG (1992) Fluorescence distribution and photodynamic effect of ALA-induced PPIX in the DMM rat colonic tumour model. Br J Cancer 65: 818–824.

    Article  PubMed  CAS  Google Scholar 

  7. Berns MW, Hammer-Wilson M, Walter RJ, Wrigth W, ChowMH, Nahabedian M, Wile A (1984) Uptake and localization of HPD and “active fraction”in tissue culture and in serially biopsied human tumors. Prog Clin Biol Res 170: 501–520.

    PubMed  CAS  Google Scholar 

  8. Bickers DR, Keogh L, Rifkind AB, Harber LC, Kappas A (1977) Studies in porphyria. VI. Biosynthesis of porphyrins in mammilian skin and in the skin of porphyric patients. J Invest Dermatol 68: 5–9.

    CAS  Google Scholar 

  9. Bloomer JR, Brenner DA, Mahoney MJ (1977) Study of factors causing excess protoporphyrin accumulation in cultured skin fibroblasts from patients with protoporphyria. J Clin Invest 60: 1354–1361.

    Article  PubMed  CAS  Google Scholar 

  10. Cairnduff F, Stringer MR, Hudson EJ, Ash DV, Brown SB (1994) Superficial photodynamic therapy with topical 5-aminolevulinic acid for superficial primary and secondary skin cancer. Br J Cancer 69: 605–608.

    Article  PubMed  CAS  Google Scholar 

  11. Chang C, Dougherty TJ (1978) Photoradiation therapy: kinetics and thermodynamics of porphyrin uptake and loss in normal and malignant cells in culture. Radiat Res 74: 498–506.

    Google Scholar 

  12. Diamond I, Granelli S, McDonagh AF, Nielsen S, Wilson CB, Jaenicke R (1973) Photodynamic therapy of malignant tumors. Lancet II: 1175–1177.

    Google Scholar 

  13. Doiron DR, Profio E, Vincent RG, Dougherty TJ (1979) Fluorescence bronchoscopy for detection of lung cancer. Chest 76: 27–32.

    Article  PubMed  CAS  Google Scholar 

  14. Dougherty TJ (1987) Photosensitizers: therapy and detection of malignant tumors. Photochem Photobiol 45: 879–889.

    Article  PubMed  CAS  Google Scholar 

  15. Figge FHJ, Weiland GS, Manganiello LOJ (1948) Cancer detection and therapy: affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metallo-porphyrins. Proc Soc Exp Biol Med 68: 640–641.

    PubMed  CAS  Google Scholar 

  16. Fijan S, Hönigsmann H, Ortel R (1995) Photodynamic therapy of epithelial skin tumours using delta-aminolevulinic acid and desferrioxamine. Br J Dermatol 133: 282–288.

    Article  PubMed  CAS  Google Scholar 

  17. Fritsch C, Becker-Wegerich P, Schulte KW, Neuse W, Lehmann P, Ruzicka T, Goerz G (1996) Photodynamische Therapie und Mamilllenplastik eines großflächigen Rumpfhautbasalioms der Mamma. Effektive Kombinationstherapie unter photo-dynamische Diagnostik. Hautarzt 47: 438–442.

    CAS  Google Scholar 

  18. Fritsch C, Batz J, Bolsen K, Schulte KW, Ruzicka T, Goerz G (1994) Exogenous δ-aminolevulinic acid induces the porphyrin biosynthesis in human skin organ cultures with different porphyrin patterns in normal and malignant human tissue. SPIE Proc 2371: 215–220.

    Article  Google Scholar 

  19. Fritsch C, Verwohlt B, Bolsen K, Ruzicka T, Goerz G (1996) Influence of topical photodynamic therapy with 5-aminolevulinic acid on the porphyrin metabolism. Arch Dermtol Res 228: 517–521.

    Article  Google Scholar 

  20. Goerz G, Link-Mannhardt A, Bolsen K, Zumdick M, Fritsch C, Schürer NY (1995) Porphyrin concentrations in various human tissues. Exp Dermatol 4: 218–220.

    Article  PubMed  CAS  Google Scholar 

  21. Grant EW, Hopper C, MacRobert AJ, Speight PM, Bown SG (1993) Photodynamic therapy of oral cancer: photosensitisation with systemic aminolaevulinic acid. Lancet 324:147–148.

    Article  Google Scholar 

  22. Gregorie HG Jr, Horger EO, Ward JL (1968) Hematoporphyrin-derivate fluorescence in malignant neoplasms. Ann Surg 167: 820–828.

    Article  PubMed  Google Scholar 

  23. Hanania J, Malik Z (1992) The effect of EDTA and serum on endogenous porphyrin accumulation and photodynamic sensitization of human K562 leukemic cells. Cancer Lett 65: 127–131.

    Article  PubMed  CAS  Google Scholar 

  24. He D, Behar S, Nomura N, Sassa S, Lim HW (1995) The effect of ALA and radiation of porphyrin/heme biosynthesis in endothelial cells. Photochem Photobiol 61: 656–661.

    Article  PubMed  CAS  Google Scholar 

  25. Hua Z, Gibson SL, Foster TH, Hilf R (1995) Effectiveness of δ-aminolevulinic acid-induced protoporphyrin as a photosensitizer for photodynamic therapy in vivo. Cancer Res 55: 1723–1731.

    PubMed  CAS  Google Scholar 

  26. Jesoinek A, Tappeiner H v (1905) Zur Behandlung von Hautcarcinome mit fluoreszierenden Stoffen. Arch Klin Med 82: 72–76.

    Google Scholar 

  27. Kalka K, Fritsch C, Ruzicka T, Goerz G, Eckel J (1997) δ-Aminolevulinic acid accumulates intracellularly by active transport mechanisms and not via passive diffusion. Arch Dermatol Res 289: (suppl): A49.

    Google Scholar 

  28. Kappas A, Sassa S, Galbrath RA, Nordmann Y (1989) The porphyrias. In: Scriver CR, Beaudet AL, Sly WS, Volle D (eds) The metabolic basis of inherited diseases, 6th edn. McGraw-Hill, New York, pp 1305–1365.

    Google Scholar 

  29. Kennedy JC, Pottier RH (1992) Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol 14: 275–292.

    Article  CAS  Google Scholar 

  30. Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol 6: 143–148.

    Article  CAS  Google Scholar 

  31. Kinsey JH, Cortese DA, Sanderson DR (1978) Detection of hematoporphyrin fluorescence during fiberoptic bronchoscopy to localize early bronchogenic carcinoma. Mayo Clin Proc 53: 594–600.

    PubMed  CAS  Google Scholar 

  32. Kriegmair M, Baumgartner R, Knuechel R, Ehsan R, Lumper W, Hofstetter A (1994) Fluorescence cystoscopy — a new method in diagnosis of bladder cancer. Urology 44: 836–841.

    Article  PubMed  CAS  Google Scholar 

  33. Kriegmair M, Baumgartner R, Knüchel R, Stepp H, Hofstädter F, Hofstetter A (1996) Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urology 155: 105–109.

    Article  CAS  Google Scholar 

  34. Lam S, Palcic B, McLean D, Hung J, Korbelik M, Profio E (1990) Detection of early lung cancer using low dose Photofrin II. Chest 97: 333–337.

    Article  PubMed  CAS  Google Scholar 

  35. Landthaler M, Rück A, Szeimies RM (1993) Photodynamische Therapie von Tumoren der Haut. Hautarzt 44: 69–74.

    PubMed  CAS  Google Scholar 

  36. Leunig M, Richert C, Gamarra F, Lumper W, Vogel E, Jocham D, Goetz AE (1993) Tumour localisation kinetics of photofrin and three synthetic porphyrinoids in an amelanotic melanoma of the hamster. Br J Cancer 68: 225–234.

    Article  PubMed  CAS  Google Scholar 

  37. Lim HW, Behar S, He D (1994) Effect of porphyrin and irradiation on heme biosynthetic pathway in endothelial cells. Photodermatol Photoimmunol Photomed 10: 17–21.

    PubMed  CAS  Google Scholar 

  38. Lipson RL, Baldes EJ, Olsen AM (1961) The use of a derivate of hematoporphyrin in tumor detection. J Natl Cancer Inst 26: 1–4.

    PubMed  CAS  Google Scholar 

  39. Loh CS, Vernon D, MacRobert AJ, Bedwell J, Bown SG, Brown SB (1992) Endogenous porphyrin distribution induced by 5-aminolaevulinic acid in the tissue layers of the gastrointestinal tract. J Photochem Photobiol B Biol 20: 47–54.

    Article  Google Scholar 

  40. Malik Z, Lugaci H (1987) Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer 56: 589–595.

    Article  PubMed  CAS  Google Scholar 

  41. Meyer-Betz F (1913) Untersuchungen über die biologische (photodynamische) Wirkung des Hämatoporphyrins und anderer Derivate des Blut- und Gallenfarbstoffes. Arch Klin Med 112: 476–503.

    Google Scholar 

  42. Monnier P, Savary M, Fontolliet C, Wagnieres G, Chatelain A, Cornaz T, Depeursinge C, van den Bergh H (1990) Photodetection and photodynamic therapy of early squamous cell carcinomas of the pharynx, esophagus and tracheobronchial tree. Laser Med Sci 5: 149.

    Article  Google Scholar 

  43. Navone NM, Frisardi AL, Resnick ER, Del C Battle AM, Polo CF (1988) Porphyrin biosynthesis in human breast cancer. Preliminary mimetic in vitro studies. Med Sci Res 16: 61–62.

    CAS  Google Scholar 

  44. Pass HI (1993) Photodynamic therapy in oncology: Mechanism and clinical use. J Natl Cancer Inst 85: 443–456.

    Article  PubMed  CAS  Google Scholar 

  45. Peng Q, Moan J, Warloe T, Rimington C (1992) Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5-aminolevulinic acid in mice bearing mammary carcinoma. Int J Cancer 52: 433–443.

    Article  PubMed  CAS  Google Scholar 

  46. Peng Q, Warloe T, Moan J, Heyerdahl H, Steen HB, Nesland JM, Giercksky KE (1995) Distribution of 5-aminolevulinic acid-induced porphyrins in noduloulcerative basal cell carcinoma. Photochem Photobiol 62: 906–913.

    Article  PubMed  CAS  Google Scholar 

  47. Pimstone NR (1985) Utility of porphyrins and light in the diagnosis and treatment of malignancy [editorial]. Hepatology 5: 338–340.

    Article  PubMed  CAS  Google Scholar 

  48. Policard A (1924) Etude sur les aspects offerts par des tumeurs expérimentales examinées à la lumière de Wood. Cr Soc Biol 91: 1423–1424.

    Google Scholar 

  49. Raab O (1900) Über die Wirkung fluorescierender Stoffe auf Infusoria. Z Biol 39: 524.

    CAS  Google Scholar 

  50. Rassmusen-Taxdal DS, Ward GE, Figge FHJ (1955) Fluorescence of human lymphatic and cancer tissues following high doses of hematoporphyrin. Cancer 8: 78.

    Article  Google Scholar 

  51. Regula J, MacRobert AJ, Gorchein A et al. (1995) Photosensitisation and photodynamic therapy of esophageal, duodenal, and colorectal tumours using 5-aminolevulinic acid-induced protoporphyrin IX — a pilot study. Gut 36: 67–75.

    Article  PubMed  CAS  Google Scholar 

  52. Santoro O, Bandieramonte G, Melloni E, Marchesini R (1990) Photodynamic therapy by topical meso-tetraphenylporphine-sulfate tetrasodium salt administration in superficial basal cell carcinomas. Cancer Res 50: 4501–4503.

    PubMed  CAS  Google Scholar 

  53. Sassa S, Kappas A (1981) Genetic, metabolic, and biochemical aspects of the porphyrias. In: Harris H and Hirschhorn (eds) Adv Hum Genet, vol II. Plenum, New York, p 121.

    Google Scholar 

  54. Sassa S, Zalar L, Poh-Fitzpatrick MB, Kappas A (1979) Studies in porphyria IX: detection of the gene defect of erythropoietic protoporphyria in mitogen-stimulated human erythrocytes. Trans Ass Am Phys 92: 268–272.

    CAS  Google Scholar 

  55. Sassa S, Schwartz S, Ruth G (1981) Accumulation of protoporphyrin IX from δ-aminolevulinic acid in bovine skin fibroblasts with hereditary erythropoietic protoporphyria. J Exp Med 153:1094–1101.

    Article  PubMed  CAS  Google Scholar 

  56. Steinbach P, Kriegmair M, Baumgartner R, Hofstädter F, Knüchel R (1994) Intravesical instillation of 5-aminolevulinic acid: the fluorescent metabolite is limited to urothelial cells. Urology 44: 676–681.

    Article  PubMed  CAS  Google Scholar 

  57. Stout AL, Becker FF (1986) Heme enzyme patterns in genetically and chemically induced mouse liver tumors. Cancer Res 46: 2756–2759.

    PubMed  CAS  Google Scholar 

  58. Szeimies RM, Sassay T, Landthaler M (1994) Penetration potency of topical applied delta aminolevulinic acid for photodynamic therapy of basal cell carcinoma. Photochem Photobiol 59: 73–76.

    Article  PubMed  CAS  Google Scholar 

  59. Szeimies RM, Abels C, Fritsch C, Karrer S, Steinbach P, Bäumler W, Goerz G, Goetz AE, Landthaler M (1995) Wavelength dependency of photodynamic effects after sensitization with 5-aminolevulinic acid in vitro and in vivo. J Invest Dermatol 105: 672–677.

    Article  PubMed  CAS  Google Scholar 

  60. Tschudy DP, Collins A (1957) Reduction of δ-aminolevulinic acid dehydratase activity in the livers of tumor-bearing animals. Cancer Res 17: 976–980.

    PubMed  CAS  Google Scholar 

  61. Tappeiner von H, Jesionek A (1903) Therapeutische Versuche mit fluoreszierenden Stoffen. MMW 50: 2042–2044.

    Google Scholar 

  62. Whitaker M (1994) Fluorescence imaging in living cells. In: Celis JE (ed) Cell biology. A laboratory handbook, vol 2. Acad. Press, San Diego New York Boston London, PP 37–43.

    Google Scholar 

  63. Wolf P, Rieger E, Kerl H (1993) Topical photodynamic therapy with endogenous porphyrins after application of 5-aminolevulinic acid an alternative treatment modality for solar keratoses, superficial squamous cell carcinomas, and basal cell carcinomas? J Am Acad Dermatol 28: 17–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fritsch, C., Neuse, W.H.G., Ruzicka, T., Goerz, G. (1997). Photodynamische Diagnostik in der Dermatologie. In: Krutmann, J., Hönigsmann, H. (eds) Handbuch der dermatologischen Phototherapie und Photodiagnostik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60425-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60425-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64401-6

  • Online ISBN: 978-3-642-60425-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics