Skip to main content

The Bulk Composition of First-Formed Petroleum in Source Rocks

  • Chapter
Petroleum and Basin Evolution

Abstract

Petroleum consists of an exceedingly complex mixture of hydrocarbons and non-hydrocarbons, extending from methane to macromolecular aggregates. The relative proportions of these components are quite variable and depend initially on the nature of the kerogen in the parent source rock and its level of maturity at the time of expulsion, and subsequently upon the pressure and temperature conditions of the source-carrier-reservoir system during expulsion, migration and accumulation. Under subsurface reservoir conditions the petroleum may be in a single vapour phase, in which case it is termed a gas accumulation, a single liquid phase, as exemplified by crude oils which are undersaturated with respect to gas, or a two-phase system comprised of a gas cap in equilibrium with an underlying crude oil accumulation. When produced at the surface, the petroleum changes from its sub-surface state as gaseous and liquid components segregate. For instance, the C1-C4 components that are dissolved in undersaturated petroleums under sub-surface conditions exsolve to give gas, while the major remaining liquid portion shrinks in volume and is termed crude oil. Similarly, as natural gases are produced dissolved C5+ components condense out as liquids or solids, giving rise to “condensate”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam PC, Schmid B, Mycke B, Strazielle C, Connan J, Hue A, Riva A, Albrecht P (1993) Structural investigation of non-polar sulfur cross-linked macromolecules in petroleum. Geochim Cosmochim Acta 57: 3395–3419

    Google Scholar 

  • Albrecht P, Vandenbroucke M, Mandengué M (1976) Geochemical studies on the organic matter from the Douala basin (Cameroon). 1. Evolution of the extractable organic matter and the formation of petroleum. Geochim Cosmochim Acta 40: 791–799

    Google Scholar 

  • Alexander R, Noble RA, Kagi RI (1987) Fossil resin biomarkers and their application in oil to source-rock correlation, Gippsland basin, Australia. APEA J 27: 63–72

    Google Scholar 

  • Asakawa T, Takeda N (1988) Study of petroleum generation by pyrolysis 1. Pyrolysis experiments by rock eval and assumption of molecular structural change of kerogen using 13-CNMR. Appi Geochem 3: 441–453

    Google Scholar 

  • Bailey NJL (1981) Hydrocarbon potential of organic matter. In: Brooks J (ed) Organic maturation studies and fossil fuel exploration. Academic Press, New York, pp 283–301

    Google Scholar 

  • Bailey NJL, Evans CR, Milner CWD (1974) Applying petroleum geochemistry to search for oil: examples from Western Canada basin. Bull Am Assoc Petol Geol 58: 2284–2294

    Google Scholar 

  • Baskin DK, Peters KE (1992) Early generation characteristics of a sulfur-rich Monterey kerogen. Bull Am Assoc Petrol Geol 76 (1): 1–13

    Google Scholar 

  • Béhar F, Pelet R (1985) Pyrolysis-gas chromatography applied to organic geochemistry - structural similarities between kerogens and asphaltenes from related rock extracts and oils. J Anal Appi Pyrolysis 8: 173–187

    Google Scholar 

  • Béhar F, Vandenbroucke M (1987) Chemical modelling of kerogens. Org Geochem 11(1): 15–24

    Google Scholar 

  • van Bergen PF, Collinson ME, Sinninghe Damste JS, de Leeuw JW (1994) Chemical and microscopical characterization of inner seed coats of fossil water plants. Geochim Cosmochim Acta 58: 231–239

    Google Scholar 

  • Bjorøy M, Williams JA, Dolcater DL, Winters JC (1988) Variation in hydrocarbon distribution in artificially matured oils. Org Geochem 13 (4–6): 901–913

    Google Scholar 

  • Bockmeulen H, Barker C, Dickey PA (1983) Geology and geochemistry of crude oils, Bolivar coastal fields, Venezuela. Bull Am Assoc Petrol Geol 67 (2): 242–270

    Google Scholar 

  • Boreham CJ, Powell TG (1991) Variation in pyrolysate composition of sediments from the Jurassic Walloon coal measures, eastern Australia as a function of thermal maturation. Org Geochem 17 (6): 723–733

    Google Scholar 

  • Boudou J-P, Durand B, Ouding J-L (1984) Diagenetic trends of a tertiary low-rank coal series. Geochim Cosmochim Acta 48: 2005–2010

    Google Scholar 

  • Brasseil SC, Lewis CA, de Leeuw JW, de Lange F, Sinninghe Damsté JS (1986) Isoprenoid thiophenes: novel diagenetic products in sediments? Nature 320: 160–162

    Google Scholar 

  • Braun RL, Rothman AJ (1975) Oil shale pyrolysis: kinetics and mechanism of oil production. Fuel 54: 129–131

    Google Scholar 

  • Brooks JD, Smith JW (1969) The diagenesis of plant lipids during the formation of coal, petroleum and natural gas. Geochim Cosmochim Acta 33: 1183–1194

    Google Scholar 

  • Burlingame AL, Haug PA, Schnoes HK, Simoneit BR (1969) Fatty acids derived from the Green River formation oil shale by extractions and oxidations-a review. In: Schenck PA, Havenaar I (eds) Advances in organic geochemistry 1968. Pergamon Press, Oxford, pp 85–129

    Google Scholar 

  • Burnham AK, Braun RL (1990) Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks. Org Geochem 16 (1–3): 27–39

    Google Scholar 

  • Burnham AK, Happe JA (1984) On the mechanism of kerogen pyrolysis. Fuel 63 (10): 1353–1356

    Google Scholar 

  • Burnham AK, Clarkson JE, Singleton MF, Wong CM, Crawford RW (1982) Biological markers from Green River kerogen decomposition. Geochim Cosmochim Acta 46: 1243–1251

    Google Scholar 

  • Cane RF, Albion PR (1971) The phytochemical history of torbanites. J Proc R Soc NSW 104: 31–37

    Google Scholar 

  • Cane RF, Albion PR (1973) The organic geochemistry of torbanite precursors. Geochim Cosmochim Acta 37: 1543–1549

    Google Scholar 

  • Castelli A, Chiaramonte MA, Beltrame PL, Camiti P, Del Bianco A, Stroppa F (1990) Thermal degradation of kerogen by hydrous pyrolysis. A kinetic study. Org Geochem 16(1–3): 75–82

    Google Scholar 

  • Chalansonnet S, Largeau C, Casadevall E, Berkaloff C, Peniguel G, Couderc R (1988) Cyanobacterial resistant biopolymers. Geochemical implications of the properties of Schizothrix sp. resistant material. Org Geochem 13 (4–6): 1003–1010

    Google Scholar 

  • Claxton MJ, Patience RL, Park PJD (1993) Molecular modelling of bond energies in potential kerogen sub-units. In: Oygard K (ed) Organic geochemistry. Falch Hurtigtrykk, Oslo, pp 198–201

    Google Scholar 

  • Connan J, Coustau H (1987) Influence of the geological and geochemical characteristics of heavy oils on their recovery. In: Meyer RF (ed) Exploration for heavy crude oil and natural bitumen. AAPG studies in geology, vol 25. AAPG, Tulsa, pp 261–179

    Google Scholar 

  • Cooles GP, Mackenzie AS, Quigley TM (1986) Calculation of petroleum masses generated and expelled from source rocks. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Organic geochemistry, vol 10. Pergamon Press, Oxford, pp 235–245

    Google Scholar 

  • Cooper BS, Barnard PC (1984) Source rocks and oils of the central and northern North Sea. In: Demaison G, Murris RJ (eds) Petroleum geochemistry and basin evaluation. AAPG Mem 35: 303–314

    Google Scholar 

  • Cooper BS, Murchison DG (1969) Organic geochemistry of coal. In: Eglinton G, Murphy MTJ (eds) Organic geochemistry. Springer, Berlin Heidelberg New York, pp 699–726

    Google Scholar 

  • Cornford C (1993) Hydrocarbon flux efficiences in the central Graben of the North Sea. Geofluids’93 Extended Abstr: 76–81

    Google Scholar 

  • Cornford C, Morrow JA, Turrington A, Miles JA, Brooks J (1983) Some geological controls on oil composition in the UK North Sea. In: Brooks J (ed) Petroleum geochemistry and exploration of Europe. Geological Society of London Spec Pubi 12. Academic Press, London, pp 175–194

    Google Scholar 

  • Curry DJ, Simpler TK (1988) Isoprenoid constituents in kerogens as a function of depositional enviroment and catagenesis. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Journals, Oxford, pp 995–1001

    Google Scholar 

  • Dahl B, Augustson JH (1993) The influence of tertiary and quaternary sedimentation and erosion on hydrocarbon generation in Norwegian offshore basins. In: Doré AG, Augustson JH, Hermanrud C, Stewart DJ, Sylta O (eds) Basin modelling: advances and applications, NPF Spec Pub, vol 3. Elsevier, Amsterdam, pp 419–431

    Google Scholar 

  • Dahl J, Hallberg R, Kaplan IR (1988) The effects of radioactive decay of uranium on elemental and isotopie ratios of alum shale kerogen. Appi Geochem 3: 583–589

    Google Scholar 

  • de Leeuw JW Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry, principles and applications. Plenum Press, New York, pp 23–72

    Google Scholar 

  • Dembicki H, Horsfield B, Ho T (1983) Source rock evaluation by pyrolysis GC. Bull Am Assoc Petrol Geol 67: 1094–1103

    Google Scholar 

  • Derenne S, Largeau C, Casadevall E, Laupretre F (1987) Structural analysis of two torbanites at different evolutionary stages. Investigation of the quantitative reliability of fa determination by 13C CP/MAS n.m.r. Fuel 66: 1084–1090

    Google Scholar 

  • Derenne S, Largeau C, Casadevall E, Connan J (1988) Mechanism of formation and chemical structure of coorongite. I. Structure and origin of the labile fraction. Fate of botryococennes during early diagenesis. Org Geochem 13 (4–6): 965–971

    Google Scholar 

  • Derenne S, Largeau C, Casadevall E, Berkaloff C (1989) Occurrence of a resistent biopolymer in the L race ofBotryococcus braunii. Phytochemistry 28: 1137–1142

    Google Scholar 

  • Derenne S, Metzger P, Largeau C, van Bergen PF, Gatellier JP, Sinninghe Damsté JS, de Leeuw JW, Berkaloff C (1992) Similar morphological and chemical variations ofGloeocapsomorpha priscain Ordovician sediments and culturedBotryococcus brauniias a response to changes in salinity. In: Eckardt C, Maxwell JR, Larter SR, Manning DAC (eds) Advances in organic geochemistry 1991. Org Geochem 19(4–6): 299–313

    Google Scholar 

  • Derenne S, Metzger P, Largeau C, van Bergen PF, Gatellier JP, Sinninghe Damsté JS, de Leeuw JW, Berkaloff C (1992) Similar morphological and chemical variations ofGloeocapsomorpha priscain Ordovician sediments and culturedBotryococcus brauniias a response to changes in salinity. In: Eckardt C, Maxwell JR, Larter SR, Manning DAC (eds) Advances in organic geochemistry 1991. Org Geochem 19(4–6): 299–313

    Google Scholar 

  • Dong JZ, Katoh T, Itoh H, Ouchi K (1986) n-Paraffins obtained by extraction and mild stepwise hydrogenation of Wandoan coal. Fuel 65(8): 1073–1078

    Google Scholar 

  • Doré AG, Augustson JH, Hermanrud C, Stewart DJ, Sylta Ø (eds) (1993) Basin modelling: advances and applications. Norwegian Petroleum Society Spec Pubi, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Douglas AG, Coates RC, Bowler BFJ, Hall K (1977) Alkanes from pyrolysis of recent sediments. In: Gomez-Angulo JA, Campos R (eds) Advances in organic geochemistry 1975. Enadimsa, Madrid, pp 357–374

    Google Scholar 

  • Douglas AG, Sinninghe Damsté JS, Fowler MG, Eglinton TI, de Leeuw JW (1991) Unique distribution of hydrocarbons and sulphur compounds released by flash pyrolysis from the fossilised alga Gloecapsomorpha prisca, a major constituent in one of four Ordovician kerogens. Geochim Cosmochim Acta 55: 275–291

    Google Scholar 

  • Düppenbecker S J, Horsfield B (1990) Compositional information for kinetic modelling and petroleum type prediction. Org Geochem 16: 259–266

    Google Scholar 

  • Düppenbecker S J, Welte DH (1991) Petroleum expulsion from source rocks - insights from geology, geochemistry and computerized basin modelling. Proc 13th World Petrol Congr 3: 1–13

    Google Scholar 

  • Dungworth G, Schwartz AW (1972) Kerogen isolated from the precambrian of South Africa and Australia. In: Gaertner HRV, Wehner H (eds) Advances in organic geochemistry 1971. Pergamon Press, Oxford, pp 699–706

    Google Scholar 

  • Durand B, Paratte M (1983) Oil potential of coals: a geochemical approach. In: Brooks J (ed) Petroleum geochemistry and exploration of Europe. Blackwell, Oxford, pp 285–292

    Google Scholar 

  • Durand B, Nicaise G, Roucache J, Vandenbroucke M, Hagemann HW (1977) Etude geochimique d’une serie de charbons. In: Campos R, Goni J (eds) Advances in organic geochemistry 1975. Enadimsa, Madrid, pp 601–632

    Google Scholar 

  • Dzou LIP, Hughes WB (1993) Geochemistry of oils and condensates, K field, offshore Taiwan: a case study in migration fractionation. Org Geochem 20 (4): 437–462

    Google Scholar 

  • Eglinton TI (1988) An investigation of kerogens using pyrolysis methods. PhD Diss, Univeristy of Newcastle upon Tyne

    Google Scholar 

  • Eglinton TI, Sinninghe-Damsté JS, Kohnen MEL, de Leeuw JW (1990a) Rapid estimation of the organic sulfur content of kerogens, coals and asphaltenes by pyrolysis-gas chromatography. Fuel 69 (11): 1394–1404

    Google Scholar 

  • Eglinton TI, Sinninghe-Damsté JS, Kohnen MEL, De Leeuw JW, Larter SR, Patience RL (1990b) Analysis of maturity-related changes in the organic sulfur composition of kerogens by flash pyrolysis-gas chromatography. In: Orr WL, White CM (eds) ACS Symposium series 429: geochemistry of sulfur in fossil fuels. Am Chem Soc, Washington, pp 529–565

    Google Scholar 

  • Eglinton TI, Sinninghe Damsté JS, Pool W, De Leeuw JW, Eijkel G, Boon J J (1992) Organic sulphur in macromolecular sedimentary organic matter. II. Analysis of distributions of sulphur-containing pyrolysis products using multivariate techniques. Geochim Cosmochim Acta 56: 1545–1560

    Google Scholar 

  • England WA, Mackenzie AS (1989) Some aspects of the organic geochemistry of petroleum fluids. Geol Rundsch 78: 291–304

    Google Scholar 

  • England WA, Mackenzie AS, Mann DM, Quigley TM (1987) The movement and entrapement of petroleum fluids in the subsurface. J Geol Soc 144: 327–347

    Google Scholar 

  • Erdmann M (1995) PhD Thesis, RWTH Aachen (in preparation)

    Google Scholar 

  • Ericsson I, Lattimer RP (1988) Pyrolysis nomenclature. J Anal Appi Pyrolysis 14: 219–221

    Google Scholar 

  • Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A (1977) Méthode rapide de caractérisation des roches mères de leur potentiel pétrolier et de leur degré d’évolution. Rev Inst Fr Pétr 32: 23–42

    Google Scholar 

  • Espitalié J, Ungerer P, Irwin I, Marquis F (1988) Primary cracking of kerogens. Experimenting and modelling Cl, C2–C5, C6–C15 and C15+ classes of hydrocarbons formed. In: Matavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Journals, Oxford, pp 893–900

    Google Scholar 

  • Forsman JP, Hunt JM (1958) Insoluble organic matter (kerogen) in sedimentary rocks of marine origin. In: Weeks LG (ed) Habitat of oil: a symposium. American Association of Petroleum Geologists, Tulsa, pp 747–778

    Google Scholar 

  • Fowler MF (1992) The influence of Gloeocapsomorpha prisca on the organic geochemistry of oils and organic-rich rocks of late ordovician age from Canada. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution. Springer, Berlin Heidelberg New York, pp 336–356

    Google Scholar 

  • Fowler MG, Douglas AG (1984) Distribution and structure of hydrocarbons in four organic-rich Ordovician rocks. Org Geochem 6: 105–114

    Google Scholar 

  • Fukushima K, Morinaga S, Uzaki M, Ochiai M (1989) Hydrocarbons generated by pyrolysis of insoluble kerogen-like materials isolated from microbially degraded plant residues. Chem Geol 76: 131–141

    Google Scholar 

  • Ganz H, Kalkreuth W (1987) Application of infrared spectroscopy to the classification of kerogen types and the evaluation of source rock and oil shale potentials. Fuel 66: 708–711

    Google Scholar 

  • Giraud A (1970) Application of pyrolysis and pyrolysis gas chromatography to the geo-chemical characterisation of kerogen in sedimentary rocks. Bull Am Assoc Petrol Geol 54: 439–455

    Google Scholar 

  • Glasø O (1980) Generalized pressure-volume-temperature correlations. J Petrol Technol: 785–795

    Google Scholar 

  • Goossens H, de Leeuw IW, Schenck PA, Brassell SC (1984) Tocopherols as likely precursors of pristane in ancient sediments. Nature 312: 440–442

    Google Scholar 

  • Gordon TL (1985) Talang Akar coals - Ardjuna subbasin oil source. Proc of the Indonesian Petroleum Association, 14th Annu Convention, pp 91–120

    Google Scholar 

  • Goth K, De Leeuw JW, Püttmann W, Tegelaar EW (1988) Origin of messel oil shale. Nature 336: 759–761

    Google Scholar 

  • Gransch JA, Eisma EE (1970) Characterisation of the insoluble organic matter of sediments by pyrolysis. In: Hobson GG, Spears GC (eds) Advances in organic geochemistry. Pergamon Press, New York, pp 407–426

    Google Scholar 

  • Gransch JA, Posthuma J (1974) On the origin of sulphur in crudes. In: Tissot BP, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Paris, pp 727–739

    Google Scholar 

  • Grantham PJ, Posthuma J, Baak A (1983) Triterpanes in a number of Far-Eastern crude oils. In: Bjorøy M (ed) Advances in organic geochemistry 1981. John Wiley, Chichester, pp 675–683

    Google Scholar 

  • Gray NR, Lancaster CJ, Gethner J (1991) Chemometric analysis of pyrolysate compositions: a model for predicting the organic matter type of source rocks using pyrolysis-gas chromatography. J Anal Appi Pyrolysis 20: 87–106

    Google Scholar 

  • Hall PB, Douglas AG (1983) The distribution of cyclic alkanes in two lacustrine deposits. In: Bjorøy M (ed) Advances in organic geochemistry 1981. Wiley, Chichester, pp 576–587

    Google Scholar 

  • Hall PB, Stoddart D, Bjorøy M, Larter SR, Brasher JE (1994) Detection of petroleum heterogeneity in eldfisk and satellite fields using thermal extraction, pyrolysis-GC, GC-MS and isotope techniques. Adv Org Geochem 22: 383–402

    Google Scholar 

  • Hartgers WA, Sinninghe Damsté JS, de Leeuw JW (1994) Geochemical significance of alkyl- benzene distributions in flash pyrolysates of kerogens, coals and asphaltenes. Geochim Cosmochim Acta 58: 1759–1775

    Google Scholar 

  • Hernandez ME, Vives MT, Pasquali J (1983) Relationships among viscosity, composition, and temperature for two groups of heavy crudes from the eastern Venezuelan basin. Org Geochem 4 (3/4): 173–178

    Google Scholar 

  • Herrmann A (1971) Die Asphaltkalk-Lagerstätte bei Holzen/Ith auf der Südwestflanke der Hils-Mulde. Beih Geol Jahrb: 125

    Google Scholar 

  • Heum OR, Dalland A, Meisingset KK (1986) Habitat of hydrocarbons at Haltenbanken (PVT– modelling as a predictive tool in hydrocarbon exploration). Norwegian Petroleum Society, Graham and Trotman, London, pp 259–274

    Google Scholar 

  • Hirsch PB (1954) X-ray scattering from coals. Proc R Soc A226: 143–169 Ho TY, Rogers MA, Drushel HV, Koons CB (1974) Evolution of sulfur compounds in crude oils. Bull Am Assoc Petrol Geol 50 (11): 2338–2348

    Google Scholar 

  • Hoffmann CF, Foster CB, Powell TG, Summons RE (1987) Hydrocarbon biomarkers from ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917. Geochim Cosmochim Acta 51: 2681–2697

    Google Scholar 

  • Hong Z, Li H, Rullkötter J, Mackenzie AS (1986) Geological application of sterane and triterpane biological marker compounds in the Linyi basin. Org Geochem 10: 433–439

    Google Scholar 

  • Horsfield B (1984) Pyrolysis studies and petroleum exploration. In: Brooks J, Welte DH (eds) Advances in petroleum geochemistry, vol 1. Academic Press, London, pp 47–298

    Google Scholar 

  • Horsfield B (1989) Practical criteria for classifying kerogens: some observations from pyrolysis-gas chromatography. Geochim Cosmochim Acta 53: 891–901

    Google Scholar 

  • Horsfield B (1990) The rapid characterization of kerogens according to source quality, compositional heterogeneity and thermal lability. Rev Palaeobot Palynol 65: 357–365

    Google Scholar 

  • Horsfield B, Düppenbecker S J (1991) The decomposition of Posidonia shale and Green River shale kerogens using microscale sealed vessel (MSSV) pyrolysis. J Anal Appi Pyrolysis 20: 107–123

    Google Scholar 

  • Horsfield B, Rullkötter J (1994) Diagenesis, catagenesis and metagenesis of organic matter. In: Magoon LB, Dow WG (eds) The petroleum system - from source to trap. American Association of Petroleum Geologists, Tulsa, pp 189–199

    Google Scholar 

  • Horsfield B, Dembicki H, Ho TTY (1983) Some potential applications of pyrolysis to basin studies. J Geol Soc 140: 431–443

    Google Scholar 

  • Horsfield B, Yordy KL, Crelling JC (1988) Determining the petroleum generating potential of coal using organic geochemistry and organic petrology. In: Matavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford, pp 121–131

    Google Scholar 

  • Horsfield B, Disko U, Leistner F (1989) The microscale simulation of maturation: outline of a new technique and its potential applications. Geol Rundsch 78: 361–373

    Google Scholar 

  • Horsfield B, Heckers J, Leythaeuser D, Littke R, Mann U (1991) A study of the Holzener Asphaltkalk, northern Germany: observations regarding the distribution, composition and origin of organic matter in an exhumed petroleum reservoir. Mar Petrol Geol 8: 198–211

    Google Scholar 

  • Horsfield B, Bharati S, Larter SR, Leistner F, Littke R, Mann U, Schenk HJ, Dypvik H (1992) On the atypical petroleum generating characteristics of alginite in the Cambrian alum shale. In: Schidlowski MEA (ed) Early organic evolution:implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 257–266

    Google Scholar 

  • Horsfield B, Düppenbecker SJ, Schenk HJ, Schaefer RG (1993a) Kerogen typing concepts designed for the quantitative geochemical evaluation of petroleum potential. In: Doré AG, Augustson JH, Hermanrud C, Stewart DJ, Sylta Ø (eds) Basin modelling: advances and applications. NPF Spec Pubi, vol 3. Elsevier, Amsterdam, pp 243–249

    Google Scholar 

  • Horsfield B, Littke R, Schenk HJ, Mann U, Curry DJ (1993b) Organic geochemistry of freshwater and alkaline lacustrine environments, Green River formation, Wyoming. Part II. Kerogen characterisation and source rock evaluation. In: Øygard K (ed) Organic geochemistry. Poster sessions from 16th Int Meet on Organic geochemistry, Stavanger 1993. Falch Hurtigtrykk, Oslo, pp 321–324

    Google Scholar 

  • Horsfield B, Curry DJ, Bohacs K, Littke R, Rullkötter J, Schenk HJ, Radke M, Schaefer RG, Carroll AR, Isaksen G, Witte EG (1994) Organic geochemistry of freshwater and alkaline lacustrine sediments in the Green River formation of the Washakie basin, Wyoming,USA. In: Telnaes N, van Graas G, Oygard K (eds) Advances in organic geochemistry 1993. Organic geochemistry, vol 22. Elsevier Science, Oxford, pp 415–440

    Google Scholar 

  • Hu C (1985) Geologic characteristics and oil exploration of small depressions in eastern China. Geology 13: 303–306

    Google Scholar 

  • Hunt JM (1979) Petroleum geochemistry and geology. Freeman, San Francisco, 617 pp

    Google Scholar 

  • Hutton AC, Kanstier AJ, Cook AC, McKirdy DM (1980) Organic matter in oil shales. J Aust Petrol Expl Assoc 20: 68–86

    Google Scholar 

  • Hvoslef S, Larter SR, Leythaeuser D (1988) Aspects of generation and migration of hydrocarbons from coal-bearing strata of the Hitra formation, Haltenbanken area, offshore Norway. Org Geochem 13 (1–3): 525–536

    Google Scholar 

  • Illich HA, Haney FR, Jackson TJ (1977) Hydrocarbon geochemistry of oils from Maranon basin, Peru. Bull Am Assoc Petrol Geol 61 (12): 2103–2114

    Google Scholar 

  • Jackson KS, McKirdy DM, Deckelmann JA (1984) Hydrocarbon generation in the Amadeus basin, central Australia. APEA J 24: 43–65

    Google Scholar 

  • Jacobson SR, Hatch JR, Teerman SC, Askin RA (1988) Middle Ordovician organic matter assemblages and their effect on Ordovician-derived oils. Bull Am Assoc Petrol Geol 72: 1090–1100

    Google Scholar 

  • Jones DM, Douglas AG, Connan J (1988) Hydrous pyrolysis of asphaltenes and polar fractions of biodegraded oils. Org Geochem 13 (4–6): 981–993

    Google Scholar 

  • Jones RW (1987) Organic facies. In: Brooks J, Welte DH (eds) Advances in petroleum geochemistry, vol 2. Academic Press, London, pp 1–90

    Google Scholar 

  • Kasrai M, Bancroft GM, Brunner RW, Jonasson RG, Brown JR, Tan KH, Feng X (1994) Sulphur speciation in bitumens and asphaltenes by X-ray absorption fine structure spectroscopy. Geochim Cosmochim Acta 58: 2865–2872

    Google Scholar 

  • Kelley PA, Bissada KK, Burda BH, Elrod LW, Pfeiffer RN (1985) Petroleum generation potential of coals and organic-rich deposits: significance in teriary coal-rich basins. Proc Ind Petrol Assoc 14: 3–21

    Google Scholar 

  • Kent PE (1954) Oil occurrence in coal measures of England. Bull Am Assoc Petrol Geol 38: 1699–1712

    Google Scholar 

  • Kiran P, Gillham JG (1976) Pyrolysis—molecular weight chromatography: a new on-line system for analysis of polymers. II. Thermal decomposition of polyolefins—polyethylene, polypropylene, polyisobutylene. J Appi Polymer Sci 20: 2045

    Google Scholar 

  • Klesment I (1974) Applications of chromatographic methods in biogeochemical investigations. Determination of the structures of sapropelites by thermal decomposition. J Chromatogr 91: 705–713

    Google Scholar 

  • Knights BA, Brown AC, Conway E, Middleditch BS (1970) Hydrocarbons from the green form of the freshwater alga Botryococcus braunii. Phytochemistry 9: 1317–1324

    Google Scholar 

  • Koplick AJ, Wailes PC, Galbraith MN, Vit I (1983) Constitution of tars from the flash pyrolysis of Australian coals: 2. Structural study of Millmerran coal-tar resins by hydrogenolysis. Fuel 62 (10): 1167–1176

    Google Scholar 

  • Krooss BM, Leythaeuser D, Schaefer RG (1992) The quantification of diffusive losses through cap rocks of natural gas reservoirs - a reevaluation. AAPG Bull 76 (3): 403–406

    Google Scholar 

  • Krooss BM, Idiz EF, Horsfield B (1995) The generation of nitrogen and methane from coal as revealed by pyrolysis experiments: implications for natural gas compositions. AAPG Annu Convention, Houston (Abstr) Lafargue E, Behar F (1989) Application of a new preparative pyrolysis technique for the determination of source-rock types and oil/source-rock correlations. Geochim Cosmochim Acta 53: 2973–2983

    Google Scholar 

  • Landais P, Zaugg P, Monin JC, Kister J, Muller JF (1991) Experimental simulation of the natural coalification of coal macerai concentrates. Bull Soc Geol Fr 2: 211–217

    Google Scholar 

  • Landes KK (1967) Eometamorphism and oil and gas in time and space, part 1. AAPG Bull 51: 828–841

    Google Scholar 

  • Largeau C, Casadevall E, Kadouri A, Metzger P (1984) Formation ofBotryococcus-derived kerogens-comparative study of immature torbanites and of the extant algaBotryococcus braunii. Org Geochem 6: 327–332

    Google Scholar 

  • Larter SR (1978) A geochemical study of kerogen and related materials. PhD Diss, Univeristy of Newcastle upon Tyne

    Google Scholar 

  • Larter SR (1984) Application of analytical pyrolysis techniques to kerogen characterization and fossil fuel exploration/exploitation. In: Voorhees K (ed) Analytical pyrolysis, methods and application. Butterworth, London, pp 212–275

    Google Scholar 

  • Larter SR (1985) Integrated kerogen typing in the recognition and quantitative assesment of petroleum source rocks. In: Petroleum geochemistry in exploration of the Norwegian Shelf. Norwegian Petroleum Society, Graham & Trotman, pp 269–285

    Google Scholar 

  • Larter SR (1988) Some pragmatic perspectives in source rock geochemistry. Mar Petrol Geol 5: 194–204

    Google Scholar 

  • Larter SR, Horsfield B (1993) Determination of structural components of kerogens using analytical pyrolysis methods. In: Engel M, Macko S (eds) Organic geochemistry. Plenum Press, New York, pp 271–287

    Google Scholar 

  • Larter SR, Senftie JT (1985) Improved kerogen typing for petroleum source rock analysis. Nature 318: 277–280

    Google Scholar 

  • Larter SR, Horsfield B, Douglas AG (1977) Pyrolysis as a possible means of determining the petroleum generating potential of sedimentary organic matter. In: Jones CER, Cramers CA (eds) Analytical pyrolysis. Proc 3rd Int Symp Analytical Pyrolysis 1975, Amsterdam, pp 189–202

    Google Scholar 

  • Larter SR, Solli H, Douglas AG (1983) Phytol containing melanoidins and their bearing on the fate of isoprenoid structures in sediments. In: Bjorøy M, Albrecht P, Cornford C et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester

    Google Scholar 

  • Larter SR, Bjorlykke KO, Karisen DA, Nedkvitne T, Eglinton TI, Johansen PE, Leythaeuser D, Mason PC, Mitchell AW, Newcombe GA (1990) Determination of petroleum accumulation histories: examples from the Ula field, Central Graben, Norwegian North Sea. In: Buller A (ed) North Sea oil and gas reservoirs, vol 2. Graham & Trotman, London, pp 319–330

    Google Scholar 

  • Law BE, Rice DD (eds) (1993) Hydrocarbons from coal. AAPG studies in geology 38. American Association Petroleum Geologists, Tulsa, 400 pp

    Google Scholar 

  • Leventhal JS (1976) Stepwise pyrolysis-gas chromatography of kerogen sedimentary rocks. Chem Geol 18: 5–20

    Google Scholar 

  • Levine JR (1993) Coalification: the evolution of coal as a source rock and reservoir rock tor oil and gas. In: Law BE, Rice DD (eds) Hydrocarbons from coal, AAPG studies in geology 38. American Association Petroleum Geologists, Tulsa, pp 39–77

    Google Scholar 

  • Lewan MD (1983) Effects of thermal maturation on stable organic carbon isotopes as determined by hydrons pyrolysis of Woodford Shale. Geochim Cosmochim Acta 47: 1471–1479

    Google Scholar 

  • Lewan M, Buchardt B (1989) Irradiation of organic matter by uranium decay in the Alum Shale, Sweden. Geochim Cosmochim Acta 53: 1307–1322

    Google Scholar 

  • Littke R, Leythaeuser D (1993) Migration of oil and gas in coals. In: Law BE, Rice DD (eds) Hydrocarbons from coal. AAPG studies in geology 38. American Association Petroleum Geologists, Tulsa, pp 219–236

    Google Scholar 

  • Louis MC, Tissot BP (1967) Influence de la temperature et de la pression sur la formation des hydrocarbures dans les argiles à kerogen. In: Proc 7th World Petroleum Congr, Mexico. Elsevier, London, pp 47–60

    Google Scholar 

  • Mackenzie AS (1984) Applications of biological markers in petroleum geochemistry. In: Brooks J, Welte DH (eds) Advances in petroleum geochemistry, vol 1. Academic Press, London, pp 115–214

    Google Scholar 

  • Mackenzie AS, Quigley TM (1988) Principles of geochemical prospect appraisal. Bull Am Assoc Petrol Geol 72: 399–415

    Google Scholar 

  • Mackenzie AS, Leythaeuser D, Altebäumer FJ, Disko U, Rullkötter J (1988) Molecular measurements of maturity for Lias δ shales in N.W. Germany. Geochim Cosmochim Acta 52: 1145–1154

    Google Scholar 

  • Magoon LB, Dow WG (eds) (1994) The petroleum system from source to trap, AAPG Mem 60. American Association Petroleum Geologists, Tulsa, 655 pp

    Google Scholar 

  • Mann AL, Goodwin NS, Lowe S (1987) Geochemical characterisation of lacustrine source rocks: a combined palynological/molecular study of a tertiary sequence from offshore China. Proc Ind Petrol Assoc 16: 241–258

    Google Scholar 

  • Martin RL, Winters JC, Williams JA (1963) Distributions of n-paraffins in crude oils and their implications to origin of petroleum. Nature 199: 110–113

    Google Scholar 

  • Mattavelli L, Pieri M, Groppi G (1993) Petroleum exploration in Italy: a review. Mar Petrol Geol 10: 410–425

    Google Scholar 

  • McHugh DJ, Saxby JD, Tardif JW (1976) Pyrolysis hydrogenation gas chromatography ot carbonaceous material from Australian sediments. Part 1: Some Australian coals. Chem Geol 17: 243–259

    Google Scholar 

  • Mclver RD (1967) Composition of kerogen-clue to its role in the origin of petroleum. Proc 7th 397 World Petrol Congr, Mexico City, vol 2, p 26

    Google Scholar 

  • McKirdy DM, McHugh DJ, Tardif JW (1980) Comparitive analysis of stromatolitic and other microbial kerogens by pyrolysis-hydrogenation gas chromatography (PHGC). In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Australian Academy of Sciences and Springer, Berlin Heidelberg New York, pp 187–200

    Google Scholar 

  • Metzger P, Berkaloff C, Casadevall E, Coûte A (1985) Alkadiene- and botryococcene-producing races of wild strains ofBotryococcus braunii. Phytochemistry 24: 2305–2312

    Google Scholar 

  • Michels R, Landais P, Torkelson BE, Philp RP (1995) Effects of effluents and water pressure on oil generation during confined pyrolysis and high-pressure hydrous pyrolysis. Geochim Cosmochim Acta 59

    Google Scholar 

  • Mitchell DL, Speight JG (1973) The solubility of asphaltenes in hydrocarbon solvents. Fuel 52: 149–152

    Google Scholar 

  • Moore PS, Hobday DK, Mai H, Sun ZC (1986) Comparison of selected non-marine petroleum-bearing basins in Australia and China. APEA J 26: 285–309

    Google Scholar 

  • Mukhopadhyay PK, Fowler MG, Dow WG (1991) Selected papers from the symposium on coal and terrestrial organic matter as a source rock for petroleum. 199th ACS Meet, Boston, 23– 24 April 1990. Org Geochem 17 (6): 671–872

    Google Scholar 

  • Muscio GPA, Horsfield B (1996) Enhanced formation of inert carbon during the natural maturation of a marine source rock; Bakken Shale, Williston basin. Energy Fuels 10: 10–16

    Google Scholar 

  • Muscio GPA, Horsfield B, Welte DH (1991) Compositional changes in the macromolecular organic matter (kerogens, asphaltenes and resins) of a naturally matured source rock sequence from northern Germany as revealed by pyrolysis methods. In: Manning D (ed) Organic geochemistry advances and applications in energy and the natural environment. Manchester University Press, Manchester, pp 447–449

    Google Scholar 

  • Muscio GPA, Horsfield B, Welte DH (1994) Occurrence of thermogenic gas in the immature zone - implications from the Bakken in-source reservoir system. Org Geochem 22 (3–5): 461–476

    Google Scholar 

  • My eke B, Michaelis W (1986) Molecular fossils from chemical degradation of macromolecular organic matter. Org Geochem 10: 847–858

    Google Scholar 

  • Nelson PF (1987) Chemically-bound n-alkyl groups in coal. Fuel 66 (9): 1264–1268

    Google Scholar 

  • Neumann HJ, Paczynska-Lahme B, Severin D (1981) Geology of petroleum, 5. Composition and properties of petroleum. Wiley, Chichester, 137 pp

    Google Scholar 

  • Nissenbaum A, Kaplan IR (1972) Chemical and isotopie evidence for the in situ origin of marine humic substances. Limnol Oceanogr 17: 570–582

    Google Scholar 

  • Noble RA, Wu CH, Atkinson CD (1991) Petroleum generation and migration from Talang Akar coals and shales offshore N.W. Java, Indonesia. Org Geochem 17 (3): 363–374

    Google Scholar 

  • Orr WL (1986) Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Journals, Oxford, pp 499–516

    Google Scholar 

  • Orr WL, Sinninghe Damsté JS (1990) Geochemistry of sulfur in petroleum systems. In: Orr WL, White CM (eds) ACS symposium series 429: geochemistry of sulfur in fossil fuels. Am Chem Soc, Washington, DC, pp 2–29

    Google Scholar 

  • Øygard K, Larter SR, Senftle JS (1988) The control of maturity and kerogen type on quantitative analytical pyrolysis data. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Organic geochemistry. Pergamon Journals, Oxford, pp 1153–1162

    Google Scholar 

  • Patience RL, Mann AL, Poplett IJF (1992) Determination of molecular structure of kerogens using 13C NMR spectroscopy. II. The effects of thermal maturation on kerogens from marine sediments. Geochim Cosmochim Acta 56: 2725–2742

    Google Scholar 

  • Payzant JD, Mclntyre DD, Mojelsky TW, Torres M, Montgomery DS, Strausz OP (1989) The identification of homologous series of thiolanes and thianes possessing a linear carbon framework from petroleums and their interconversion under simulated geological conditions. Org Geochem 14 (4): 461–473

    Google Scholar 

  • Pelet R, Behar F, Monin JC (1986) Resins and asphaltenes in the generation and migration of petroleum. Org Geochem 10: 481–498

    Google Scholar 

  • Peters KE, Moldowan J (1993) The biomarker guide. Prentice Hall, New York, 363 pp

    Google Scholar 

  • Philippi GT (1965) On the depth, time and mechanism of petroleum generation. Geochim Cosmochim Acta 29: 1021–1049

    Google Scholar 

  • Philippi GT (1975) The deep subsurface temperature controlled origin of the gaseous and gasoline-range hydrocarbons of petroleum. Geochim Cosmochim Acta 39: 1353–1373

    Google Scholar 

  • Philp RP (1982) Application of pyrolysis-GC and pyrolysis-GC-MS to fossil fuel research. Trends Anal Chem 10: 237–241

    Google Scholar 

  • Philp RP, Calvin M (1976) Possible origin for insoluble kerogen, debris in sediments from insoluble cell-wall materials of algae and bacteria. Nature 262: 134–136

    Google Scholar 

  • Philp RP, Gilbert TD (1985) Source rock and asphaltene biomarker characterization by pyrolysis gas chromatography-mass spectrometry-multiple ion detection. Geochim Cosmo- chim Acta 49: 1421–1432

    Google Scholar 

  • Powell TG (1975) Geochemical studies related to the occurrence of oil and gas in the Dampier sub-basin, western Australia. J Geochem Expl 4: 441–466

    Google Scholar 

  • Powell TG (1984) Some aspects of the hydrocarbon geochemistry of a middle Devonian barrier reef complex, western Canada. In: Palacas JG (ed) Petroleum geochemistry and source rock potential of carbonate rocks. AAPG Stud Geol 18: 45–62

    Google Scholar 

  • Powell TG (1986) Petroleum geochemistry and depositional setting of lacustrine source rocks. Mar Petrol Geol 3: 200–219

    Google Scholar 

  • Price LC (1989) Primary petroleum migration from shales with oxygen–rich organic matter. J Petrol Geol 12: 289–324

    Google Scholar 

  • Radke M (1987) Organic geochemistry of aromatic hydrocarbons. In: Brooks J, Welte D (eds) Advances in petroleum geochemistry, vol 2. Academic Press, London, pp 141–207

    Google Scholar 

  • Radke M, Willsch H (1993) Generation of alkylbenzenes and benzo(b)thiophenes by artificial thermal maturation of sulfur-rich coal. Fuel 72 (8): 1103–1108

    Google Scholar 

  • Reading HG, Collinson JD, Edwards MB, Elliott T, Jenkyns HC, Johnson HD, Mitchell AHG, Rupke NA, Sellwood BW, Till R (1978) Sedimentary environments and facies. Elsevier, New York

    Google Scholar 

  • Reed JD, Illich HA, Horsfield B (1986) Biochemical evolutionary significance of Ordovician oils and their sources. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford, pp 347–358

    Google Scholar 

  • Rice DD (1993) Composition and origins of coalbed gas. In: Law BE, Rice DD (eds) Hydrocarbons from coal, AAPG studies in geology, vol 38. American Association Petroleum Geologists, Tulsa, pp 159–184

    Google Scholar 

  • Romovacek J, Kubat J (1968) Characterisation of coal substance by pyrolysis-gas chromatography. Anal Chem 40: 1119–1127

    Google Scholar 

  • Ropertz B (1994) Wege der primären Migration:eine Untersuchung über Porennetze, Klüfte und Kerogennetzwerke als Leiterbahnen für den Kohlenwasserstoff-Transport. PhD Diss, RWTH Aachen (unpublished )

    Google Scholar 

  • Rouxhet PG, Robin PL (1978) Infrared study of the evolution of kerogens of different origins during catagenesis and pyrolysis. Fuel 57: 533–540

    Google Scholar 

  • Rovere CE, Crisp PT, Ellis J, Bolton PD (1983) Chemical characterization of shale oil from Condor, Australia. Fuel 62: 1274–1282

    Google Scholar 

  • Rowland SJ, Aareskjold K, Xuemin G, Douglas AG (1986) Hydrous pyrolysis of sediments: composition and proportions of aromatic hydrocarbons in pyrolysates. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Organic geochemistry, vol 10. Pergamon, Oxford, pp 1033–1040

    Google Scholar 

  • Rullkötter J, Michaelis W (1990) The structure of kerogen and related materials. A review of recent progress and future trends. In: Durand B, Behar F (eds) Advances in organic geochemistry 1989. Part II: Molecular geochemistry. Pergamon Press, Oxford, pp 829–852

    Google Scholar 

  • Rullkötter J, Leythaeuser D, Horsfield B, Littke R, Mann U, Müller PJ, Radke M, Schaefer RG, Schenk H–J, Schwochau K, Witte EG, Welte DH (1988) Organic matter maturation under influence of a deep intrusive heat source: a natural experiment for quantification of hydrocarbon generation and expulsion from a petroleum source rock (Toarcien shale, northern Germany). In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Organic geochemistry. Pergamon Journals, Oxford, pp 847–856

    Google Scholar 

  • Sachsenhofer RF (1993) Petroleum generation and migration in the Styrian basin (Pannonian basin system, Austria): an integrated geochemical and numerical modelling study. Mar Petrol Geol 11: 684–701

    Google Scholar 

  • Sachsenhofer RF (1993) Petroleum generation and migration in the Styrian basin (Pannonian basin system, Austria): an integrated geochemical and numerical modelling study. Mar Petrol Geol 11: 684–701

    Google Scholar 

  • Saxby JD (1981) Kerogen genesis and structure - similarities to rubber. Fuel 60: 994–996

    Google Scholar 

  • Scheidt G, Littke R (1989) Organic petrology of clastic sediments and coals from western Germany. Geol Rundsch 78: 375–390

    Google Scholar 

  • Schenk HJ, Horsfield B (1993) Kinetics of petroleum generaion by programmed-temperature closed- versus open-system pyrolysis. Geochim Cosmochim Acta 57: 623–630

    Google Scholar 

  • Schenk H J, Witte EG, Müller PJ, Schwochau K (1986) Infrared estimates of aliphatic kerogen carbon in sedimentary rocks. Org Geochem 10: 1099–1104

    Google Scholar 

  • Schenk HJ, Horsfield B, Witte EG (1993) Organic geochemistry of freshwater and alkaline lacustrine environments, Green River formation, Wyoming. Part III. Comparative characterisation of selected shale samples by various spectroscopic and pyrolysis techniques including kinetic measurements. In: Øygard K (ed) Organic geochemistry. Poster sessions from the 16th Int Meet on Organic geochemistry, Stavanger 1993. Falch Hurtigtrykk, Oslo, pp 324–327

    Google Scholar 

  • Schowalter TT (1979) Mechanics of secondary hydrocarbon migration and entrapment. Bull Am Assoc Petrol Geol 63: 723–760

    Google Scholar 

  • Senftie JT, Larter SR, Bromley BW, Brown JH (1986) Quantitative chemical characterization of vitrinite concentrates using pyrolysis-gas chromatography. Rank variation of pyrolysis products. Org Geochem 9 (6): 345–350

    Google Scholar 

  • Sinninghe Damsté JS, De Leeuw JW (1990) Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Org Geochem 16 (4–6): 1077–1101

    Google Scholar 

  • Sinninghe-Damsté JS, Eglinton TI, de Leeuw JW, Schenck PA (1989) Organic sulphur in macromolecular sedimentary organic matter. 1.Structure and origin of sulphur containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis. Geochim Cosmochim Acta 53: 873–889

    Google Scholar 

  • Sinninghe Damsté JS, de la Heras FXC, de Leeuw JW (1992) Molecular analysis of sulphur-rich brown coals by flash pyrolysis-gas chromatography-mass spectrometry. J Chromatogr 607: 361–376

    Google Scholar 

  • Sinninghe Damsté JS, de las Heras FXC, van Bergen PF, de Leeuw JW (1993) Characterization of tertiary catalan lacustrine oil shales: discovery of extremely organic sulphur-rich type I kerogens. Geochim Cosmochim Acta 57: 389–415

    Google Scholar 

  • Smith GC, Cook AC (1984) Petroleum occurence in the Gippsland basin and its relationship to rank and organic matter type. APEA J 24: 196–216

    Google Scholar 

  • Snowdon LR, McCrossan RG (1973) Identification of petroleum source rocks using hydrocarbon gas and organic carbon content. Geol Surv Can 72–36: 1–12

    Google Scholar 

  • Snowdon LR, Roy KJ (1975) Regional organic metamorphism in the mesozoic strata of the Sverdrup basin. Bull Can Petrol Geol 23: 131–148

    Google Scholar 

  • Solli H, Leplat P (1986) Pyrolysis-gas chromatography of asphaltenes and kerogens from source rocks and coals - a comparative structural study. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1987. Organic geochemistry, vol 10. Blackwell, Oxford, pp 313–329

    Google Scholar 

  • Stach E, Mackowsky M-T, Teichmüller M, Teichmüller R, Taylor GH, Chandra D, Murchinson DG, Zierke F (eds) (1982) Stach’s textbook of coal petrology. Gebrüder Bornträger, Berlin

    Google Scholar 

  • Stevenson FJ (1974) Non biological transformations of amino acids in soils and sediments. In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Paris, pp 701–714

    Google Scholar 

  • Stout SA, Boon J J (1994) Structural characterization of the organic polymers comprising a lignite’s matrix and megafossils. Org Geochem 21 (8/9): 953–970

    Google Scholar 

  • Sutton C (1979) Depositional environments and their relation to chemical composition of Java Sea crude oils. UN/ESCAP, CCOP Tech Pubi, Bangkok, pp 163–179

    Google Scholar 

  • Tannenbaum E, Aizenshtat Z (1985) Formation of immature asphalt from organic rich carbonate rocks-I: geochemical correlation. Org Geochem 8 (2): 181–192

    Google Scholar 

  • Teerman SC, Hwang RJ (1991) Evaluation of the liquid hydrocarbon potential of coal by artificial maturation techniques. Org Geochem 17 (6): 749–764

    Google Scholar 

  • Tegelaar EW, Noble RA (1994) Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography. In: Telnaes N, van Graas G, Oygard K (eds) Advances in organic geochemistry 1993. Pergamon Press, Oxford, pp 543–574

    Google Scholar 

  • Tegelaar EW, de Leeuw JW, Derenne S, Largeau C (1989a) A reappraisal of kerogen formation. Geochim Cosmochim Acta 53: 3103–3106

    Google Scholar 

  • Tegelaar EW, Matthezing RM, Jansen BH, Horsfield B, de Leeuw JW (1989b) Possible origin of n-alkanes in high-wax crude oils. Nature 342: 529–531

    Google Scholar 

  • Thomas BM (1982) Land-plant source rocks for oil and their significance in Australian basins. APEA J 22: 164–178

    Google Scholar 

  • Thomas BM, Moller-Pedersen P, Whitaker MF, Shaw ND (1985) Organic facies and hydrocarbon distributions in the Norwegian North Sea. In: Thomas BM (ed) Petroleum geochemistry in exploration of the Norwegian shelf. Graham & Trotman, London, pp 3–26

    Google Scholar 

  • Thompson KFM (1988) Gas-condensate migration and oil fractioning in deltaic systems. Mar Petrol Geol 5: 237–246

    Google Scholar 

  • Thompson S, Cooper BS, Morley RJ, Barnard PC (1985) Oil-generating coals. Norwegian Petroleum Society, Graham & Trotman, London, pp 59–73

    Google Scholar 

  • Tissot BP, Welte DH (1978) Petroleum formation and occurrence. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tissot BP, Durand B, Espitalie J, Combaz A (1974) Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bull 58: 499–506

    Google Scholar 

  • Tissot BP, Pelet R, Ungerer P (1987) Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. Bull Am Assoc Petrol Geol 71: 1445–1466

    Google Scholar 

  • Ungerer P (1990) State of the art of research in kinetic modelling of oil formation and expulsion. In: Durand B, Behar F (eds) Advances in organic geochemistry 1989. Org Geochem 16: 1–25

    Google Scholar 

  • Ungerer P, Pelet R (1987) Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327: 52–54

    Google Scholar 

  • Urov KE (1980) Thermal decomposition of kerogens - mechanism and analytical application. J Anal Appi Pyrolysis 1: 323–338

    Google Scholar 

  • van Aarssen BGK, Cox HC, Hoogendoorn P, De Leeuw JW (1990) A cadinene biopolymer, in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from South East Asia. Geochim Cosmochim Acta 54: 3021–3031

    Google Scholar 

  • van Aarssen BGK, de Leeuw JW, Horsfield B (1991) A comparative study of three different pyrolysis methods used to characterise a biopolymer isolated from fossil and extant dammar resins. J Anal Appi Pyrolysis 20: 125–139

    Google Scholar 

  • van Aarssen BGK, Hessels JKC, Abbink OA, de Leeuw JW (1992) The occurrence of polycychc sesqui-, tri- and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from southeast Asia. Geochim Cosmochim Acta 56: 1231–1246

    Google Scholar 

  • van de Meent D, Brown SC, Philp RP, Simoneit BRT (1980) Pyrolysis-high resolution gas chromatography and pyrolysis gas chromatography-mass spectrometry of kerogens and kerogen precursors. Geochim Cosmochim Acta 44: 999–1013

    Google Scholar 

  • van Graas G, De Leeuw JW, Schenck PA, Haverkamp J (1981) Kerogen of toarcian shales of the Paris basin. A study of its maturation by flash pyrolysis techniques. Geochim Cosmochim Acta 45: 2465–2474

    Google Scholar 

  • Walker RG (1979) Facies and facies models. General introduction. In: Walker RG (ed) Facies models, geoscience Canada reprint series edn, vol 1. Geosci Can, Ottawa (N): 1–8

    Google Scholar 

  • Weres O, Newton AS, Tsao L (1988) Hydrous pyrolysis of alkanes, alkenes, alcohols and ethers. Org Geochem 12 (5): 433–444

    Google Scholar 

  • Wilhelms A (1992) An investigation into the factors influencing tar mat formation in petroleum reservoirs. PhD Diss, May 1992, University of Oslo, Norway

    Google Scholar 

  • Wilhelms A, Larter SR (1994) On the origin of tar mats in petroleum reservoirs: part I. Introduction and case studies. Mar Petrol Geol 11: 418–441

    Google Scholar 

  • Williams JA, Dolcater DL, Torkelson BE, Winters JC (1988) Anomalous concentrations of specific alkylaromatic and alkylcycloparaffin components in West Texas and Michigan crude oils. Org Geochem 13 (1–3): 47 – 59

    Google Scholar 

  • Wilson MA, Vassallo AM (1985) Developments in high–resolution solid-state 13C NMR spectroscopy of coals. Org Geochem 8 (5): 299–312

    Google Scholar 

  • Wilson MA, Philp RP, Gillam AH, Gilbert TD, Tate KR (1983) Comparison of the structures of humic substances from aquatic and terrestrial sources by pyrolysis gas chromatography- mass spectrometry. Geochim Cosmochim Acta 47: 497–502

    Google Scholar 

  • Yarzab RF, Abdel-Basset Z, Given PH (1979) Hydroxyl contents of coals. Geochim Cosmochim Acta 43: 281–287

    Google Scholar 

  • Yen TF (1972) Present status of the structure of petroleum heavy ends and its significance to various technical applications. Am Chem Soc Div Petrol Chem Prepr 17: F102–114

    Google Scholar 

  • Young A, Mclver RD (1977) Distribution of hydrocarbons between oils and associated fine grained sedimentary rocks - physical chemistry applied to petroleum geochemistry II. AAPG Bull 61 (9): 1407–1436

    Google Scholar 

  • Zumberge JE (1984) Source rocks of the La Luna formation (upper Cretaceous, in the Middle Magdalena Valley, Columbia. In: Palacas JG (ed) Petroleum geochemistry and source rock potential of carbonate rocks. AAPG studies in geology, vol 18. American Association of Petroleum Geologists, Tulsa, pp 127–134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horsfield, B. (1997). The Bulk Composition of First-Formed Petroleum in Source Rocks. In: Welte, D.H., Horsfield, B., Baker, D.R. (eds) Petroleum and Basin Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60423-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60423-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61128-8

  • Online ISBN: 978-3-642-60423-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics