Maturation and Petroleum Generation

  • M. Radke
  • B. Horsfield
  • R. Littke
  • J. Rullkötter
Chapter

Abstract

It is now firmly established that crude oil and most natural gas, collectively termed petroleum, are generated from kerogen in sedimentary source rocks. The organic origin of crude oil is beyond doubt based on optical activity (Oakwood et al. 1952; Hills and Whitehead 1966) and isotopie composition (Silverman 1964). The chemical structure of biological markers in ancient sediments and crude oils compared to that of living cell constituents (Calvin 1969; Albrecht and Ourisson 1971; Tegelaar et al. 1989a), and regularities in crude oil composition according to sedimentary environments (Tissot and Welte 1984) further confirm an organic origin. However, it was uncertain for a long time at what depth petroleum forms in the earth. The discovery of hydrocarbons in Recent sediments by Smith (1952) gave support to a shallow origin for oil. Baker (1960) and Meinschein (1961) noted that the amount of hydrocarbons in Recent sediments could account for known oil reserves. However, Stevens (1956) found only a few simple aromatic hydrocarbons in Recent sediments as compared to the numerous complex aromatic hydrocarbons in ancient sediments and crude oils. Other authors (Emery and Hoggan 1958; Dunton and Hunt 1962; Hunt 1975) noted the abundance of light hydrocarbons (C4–C13) in petroleums and their absence in young sediments. It was thus argued that petroleum must form at greater burial depths.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott GD, Maxwell JR (1988) Kinetics of the aromatization of rearranged ring-C monoaromatic steroid hydrocarbons. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 881–885Google Scholar
  2. Abbott GD, Lewis CA, Maxwell JR (1985a) Laboratory models for aromatization and isomerization of hydrocarbons in sedimentary basins. Nature 318: 651–653Google Scholar
  3. Abbott GD, Lewis CA, Maxwell JR (1985b) The kinetics of specific organic reactions in the zone of catagenesis. Philos Trans R Soc Lond A 315: 107–122Google Scholar
  4. Abbott GD, Wang GY, Eglinton TI, Home AK, Petch GS (1990) The kinetics of biological marker release and degradation processes during hydrous pyrolysis of vitrinite kerogen. Geochim Cosmochim Acta 54: 2451–2461Google Scholar
  5. Abbott GD, Petch GS, Wang GY (1992) Reply to comment by R. Marzi on “The kinetics of sterane biological marker release and degradation process during the hydrous pyrolysis of vitrinite kerogen”. Geochim Cosmochim Acta 56: 535–536Google Scholar
  6. Abelson PH (1963) Organic geochemistry and the formation of petroleum. In: Proc 6th World Petr Congr, Frankfurt, vol 1. Frankfurt, pp 397–407Google Scholar
  7. Ainsworth NR, Burnett RD, Kontrovitz M (1990) Ostracod colour change by thermal alteration, offshore Ireland and western UK. Mar Petrol Geol 7: 288–297Google Scholar
  8. Aizenshtat Z, Pinsky I, Spiro B (1986) Electron spin resonance of stabilized free radicals in sedimentary organic matter. Org Geochem 9: 321–329Google Scholar
  9. Albaigés J, Algaba J, Clavell E, Grimait J (1986) Petroleum geochemistry of the Tarragona Basin (Spanish Mediterranean off-shore). In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 441–450Google Scholar
  10. Albrecht P, Ourisson G (1969) Diagenèse des hydrocarbures saturés dans une série sédimentaire épaisse (Douala, Cameroun). Geochim Cosmochim Acta 33: 138–142Google Scholar
  11. Albrecht P, Ourisson G (1971) Biogenic substances in sediments and fossils. Angew Chem Int Ed Engl 10: 209–286Google Scholar
  12. Albrecht P, Vandenbroucke M, Mandengué M (1976) Geochemical studies on the organic matter from the Douala Basin (Cameroon). I. Evolution of the extractable organic matter and the formation of petroleum. Geochim Cosmochim Acta 40: 791–799Google Scholar
  13. Alexander R, Kagi R, Sheppard P (1984) 1,8-Dimethylnaphthalene as an indicator of petroleum maturity. Nature 308: 442–443Google Scholar
  14. Alexander R, Kagi RI, Rowland SJ, Sheppard PN, Chirila TV (1985) The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums. Geochim Cosmochim Acta 49: 385–395Google Scholar
  15. Alexander R, Cumbers KM, Kagi RI (1986) Alkylbiphenyls in ancient sediments and petroleums. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 841–845Google Scholar
  16. Alexander R, Fisher SJ, Kagi RI (1988) 2,3-Dimethylbiphenyl: Kinetics of its cyclisation reaction and effects of maturation upon its relative concentration in sediments. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987, Pergamon Press, Oxford. Org Geochem 13: 833–837Google Scholar
  17. Allan J, Douglas AG (1974) Alkanes from the pyrolytic degradation of bituminous vitrinites and sporinites. In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Paris, pp 203–206Google Scholar
  18. Allan J, Douglas AG (1977) Variations in the content and distribution ofn-alkanes in a series of Carboniferous vitrinites and sporinites of bituminous rank. Geochim Cosmochim Acta 41: 1223–1230Google Scholar
  19. Allan J, Larter SR (1983) Aromatic structures in coal macerai extracts and kerogens. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981, Wiley, Chichester, pp 534–546Google Scholar
  20. Atkins PW (1990) Physical Chemistry, 4th edn. Oxford University Press, Oxford, 995 ppGoogle Scholar
  21. Baker DR, Claypool GE (1970) Effects of incipient metamorphism on organic matter in mudrock. AAP G Bull 54: 456–468Google Scholar
  22. Baker EG (1960) A hypothesis concerning the accumulation of sediment hydrocarbons to form crude oil. Geochim Cosmochim Acta 19: 309–317Google Scholar
  23. Baker EW, Louda W (1986) Porphyrins in the geological record. In: Johns RB (ed) Biological markers in the sedimentary record. Elsevier, Amsterdam, pp 125–225Google Scholar
  24. Baker EW, Palmer SE (1978) Geochemistry of porphyrins. In: Dolphin D (ed) The porphyrins, vol 1. Academic Press, London, pp 486–552Google Scholar
  25. Baker EW, Yen TF, Dickie JP, Rhodes RE, Clark LF (1967) Mass spectrometry of porphyrins II. Characterization of petroporphyrins. J Am Chem Soc 89: 3631–3639Google Scholar
  26. Bakr M, Akiyama M, Sanada Y (1991) In situ high temperature ESR measurements for kerogen maturation. Org Geochem 17: 321–328Google Scholar
  27. Bakr M, Akiyama M, Yokomo T, Sanada Y (1988) Radical concentration of kerogen as a maturation parameter. Org Geochem 12: 29–32Google Scholar
  28. Bakr MY, Akiyama M, Sanada Y (1990) ESR assessment of kerogen maturation and its relation with petroleum genesis. Org Geochem 15: 595–599Google Scholar
  29. Barker C (1974) Pyrolysis techniques for source rock evaluation. AAPG Bull 58: 2349–2361Google Scholar
  30. Barwise AJG, Park PJD (1983) Petroporphyrin fingerprinting as a geochemical marker. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 668–674Google Scholar
  31. Barwise AJG, Roberts I (1984) Diagenetic and catagenetic pathways for porphyrins in sediments. In: Schenk PA, de Leeuw JW, Lijmbach GWM (eds) Advances in organic geochemistry 1983. Pergamon Press, Oxford. Org Geochem 6: 167–176Google Scholar
  32. Baskin DK, Peters KE (1992) Early generation characteristics of a sulfur-rich Monterey kerogen. AAPG Bull 76: 1–13Google Scholar
  33. Bates AL, Hatcher PG (1989) Solid-state 13C NMR studies of a large fossil gymnosperm from the Yallourn Open Cut, Latrobe Valley, Australia. Org Geochem 14: 609–617Google Scholar
  34. Béarez C (1985) Transformation catalytique de composés représentatifs de la matiere organique sédimentaire sur minéraux naturels et synthétiques. PhD Thesis, Universite de Poitiers, 192 ppGoogle Scholar
  35. Beaumont C, Boutilier R, Mackenzie AS, Rullkötter J (1985) Isomerization and aromatization of hydrocarbons and the paleothermometry and burial history of Alberta Foreland Basin. AAPG Bull 69: 546–566Google Scholar
  36. Bertrand R (1990) Correlations among the reflectances of vitrinite, chitinozoans, graptolites and scolecodents. Org Geochem 15: 565–574Google Scholar
  37. Blob AK, Rullkötter J, Welte DH (1988) Direct determination of the aliphatic carbon content of individual macérais in petroleum source rocks by near-infrared microspectroscopy. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 1073–1078Google Scholar
  38. Boreham CJ, Crick IH, Powell TG (1988) Alternative calibration of the Methylphenanthrene Index against vitrinite reflectance: Application to maturity measurements on oils and sediments. Org Geochem 12: 289–294Google Scholar
  39. Bray EE, Evans ED (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochim Cosmochim Acta 22: 2–15Google Scholar
  40. Bray EE, Evans ED (1965) Hydrocarbons in non-reservoir-rock source beds. AAPG Bull 49: 248–257Google Scholar
  41. Brooks J (1981) Organic maturation of sedimentary organic matter and petroleum exploration: a review. In: Brooks J (ed) Organic maturation studies and fossil fuel exploration. Academic Press, London, pp 1–37Google Scholar
  42. Brooks JD, Smith JW (1967) The diagenesis of plant lipids during the formation ot coal, petroleum and natural gas. I. Changes in then-paraffin hydrocarbons. Geochim Cosmochim Acta 31: 2389–2397Google Scholar
  43. Buiskol Taxopeus JMA (1983) Selection criteria for the use of vitrinite reflectance as a maturity tool. In: Brooks J (ed) Petroleum geochemistry and exploration of Europe. Blackwell, Oxford, pp 295–308Google Scholar
  44. Burkova UN, Ryadova OV, Serebrennikova OW, Titov VI (1980) Geoporphyrin composition as an indication of organic matter transformation. Geokhimiya 9: 1417–1421Google Scholar
  45. Burkow IC, Jørgensen E, Meyer T, Rekdal A, Sydnes L (1990) Experimental simulation of chemical transformations of aromatic compounds in sediments. Org Geochem 15: 101–108Google Scholar
  46. Burnham AK (1989) On the validity of the Pristane Formation Index. Geochim Cosmochim Acta 53: 1693–1697Google Scholar
  47. Burnham AK, Braun RL, Samoun AM (1988) Further comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 839–845Google Scholar
  48. Buseck PR, Bo-Jun H, Miner B (1988) Structural order and disorder in Precambrian kerogens. Org Geochem 12: 221–234Google Scholar
  49. Calvin M (1969) Chemical evolution. Clarendon Press, OxfordGoogle Scholar
  50. Cartz L, Hirsch PB (1960) A contribution to the structure of coals from X-ray diffraction studies. Philos Trans R Soc Lond A 252: 557–602Google Scholar
  51. Cassani F, Gallango O, Talukdar S, Vallejos C, Ehrmann U (1988) Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 73–80Google Scholar
  52. Chaffee AL, Perry GJ, Johns RB (1983) Pyrolysis-gas chromatography of Australian coals. I. Victorian brown coal lithotypes. Fuel 62: 303–310Google Scholar
  53. Chicarelli MI, Kaur S, Maxwell JR (1987) Sedimentary porphyrins: unexpected structures, occurrence and possible origins. In: Filby RH, Branthaver JF (eds) Metal complexes in fossil fuels - geochemistry, characterization, and processing. ACS Symp Ser 344. Am Chem Soc, Washington, pp 40–67Google Scholar
  54. Claypool GE, Mancini EA (1989) Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama. AAPG Bull 73: 904–924Google Scholar
  55. Clayton CJ (1991) Effect of maturity on carbon isotope ratios of oils and condensates. Org Geochem 17: 887–899Google Scholar
  56. Connan J (1974) Diagenèse naturelle et diagenèse artificielle de la matière organique à éléments végétaux prédominants. In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Paris, pp 73–95Google Scholar
  57. Cooles GP, Mackenzie AS, Quigley TM (1986) Calculation of petroleum masses generated and expelled from source rocks. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 235–245Google Scholar
  58. Cooper JE, Bray EE (1963) A postulated role of fatty acids in petroleum formation. Geochim Cosmochim Acta 27: 1113–1127Google Scholar
  59. Cornford C, Morrow JA, Turrington A, Miles JA, Brooks J (1983) Some geological controls on oil composition in the U.K. North Sea. In: Brooks J (ed) Petroleum geochemistry and exploration of Europe. Blackwell, Oxford, pp 175–194Google Scholar
  60. Corwin AH (1959) Petroporphyrins. In: Proc 5th World Petrol Congr, New York, vol. 5. New York, pp 119–129Google Scholar
  61. Costa Neto C (1983) Theoretical organic geochemistry. I. An alternative model for the epimerization of hydrocarbon chiral centers in sediments. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 834–838Google Scholar
  62. Costa Neto C (1988) Theoretical organic geochemistry. II. The siton concept and the assisted vibrational displacement mechanism of geochemical reactions in oil shales. An Acad brasil Ci 60 (2): 137–148Google Scholar
  63. Costa Neto C (1991) The effect of pressure on geochemical maturation: theoretical considerations. Org Geochem 17: 579–584Google Scholar
  64. Costa Neto C, Nakayama HT (1987) The stratigraphic function for phenol content in the CERI-1 column of the Irati Formation. An Acad brasil Ci 59 (4): 319–328Google Scholar
  65. Cumbers KM, Alexander R, Kagi RI (1987) Methylbiphenyl, ethylbiphenyl and dimethylbiphenyl isomer distribution in some sediments and crude oils. Geochim Cosmochim Acta 51: 3105–3112Google Scholar
  66. Curiale JA (1986) Origin of solid bitumens, with emphasis on biological marker results. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 559–580Google Scholar
  67. Curry DJ, Simpler TK (1988) Isoprenoid constituents in kerogens as a function of depositional environment and catagenesis. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 995–1001Google Scholar
  68. Dahl J, Chen RT, Kaplan IR (1989) Alum shale bitumen maturation and migration: implications for Gotland’s oil. J Pet Geol 12: 465–476Google Scholar
  69. de Leeuw JW, Cox HC, van Graas G, van de Meer FW, Peakman TM, Baas JMA, van de Graaf B (1989) Limited double bond isomerization and selective hydrogénation of sterenes during early diagenesis. Geochim Cosmochim Acta 53: 903–909Google Scholar
  70. Dembicki H, Pirkel FL (1985) Regional source rock mapping using a source potential rating index. AAPG Bull 69: 567–581Google Scholar
  71. Didyk BM, Alturky YIA, Pillinger CT, Eglinton G (1975) Petroporphyrins as indicators of geothermal maturation. Nature 256: 563–565Google Scholar
  72. di Primio R, Horsfield B (1995) Predicting the generation of heavy oils in carbonate/evapontic environments using pyrolysis methods. In: Grimait JO, Dorronsoro C (eds) Organic geochemistry: developments and applications to energy, climate, environment and human history Selected Papers from the 17th Int Meet on Organic geochemistry, Donostia-San Sebastián, The Basque Country, Spain, AIGOA, Donostia-San Sebastian, pp 410–412Google Scholar
  73. Dominé F (1989) Kinetics of hexane pyrolysis at very high pressures. 1. Experimental study. Energy Fuels 3: 89–96Google Scholar
  74. Dominé F (1991) High pressure pyrolysis of n-hexane, 2,4-dimethylpentane and 1-phenylbutane. Is pressure an important geochemical parameter? Org Geochem 17: 619–634Google Scholar
  75. Dormans HNM, Huntjens FJ, van Krevelen DW (1957) Chemical structure and properties of coal. XX. Composition of the individual macérais (vitrinites, fusinites, micrimtes and exinites). Fuel 36: 321–333Google Scholar
  76. Douglas AG, Sinninghe Damsté JS, Fowler MG, Eglinton TI, de Leeuw JW (1991) Unique distributions of hydrocarbons and sulphur compounds released by flash pyrolysis from the fossilised alga Gloeocapsomorpha prisca, a major constituent in one of four Ordovician kerogens. Geochim Cosmochim Acta 55: 275–291Google Scholar
  77. Dungworth G, Schwartz AW (1972) Kerogen isolates from the Precambrian of South Africa and Australia. In: Von Gaertner HR, Wehner H (eds) Advances in organic geochemistry 1971. Pergamon Press, Oxford, pp 699–706Google Scholar
  78. Dunton ML, Hunt JM (1962) Distribution of low-molecular-weight hydrocarbons in Recent and ancient sediments. AAPG Bull 46: 2246–2248Google Scholar
  79. Düppenbecker S, Horsfield B (1990) Compositional information for kinetic modelling and petroleum type prediction. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 259–266Google Scholar
  80. Durand B, Marchand A, Combaz A (1977a) Etude de kérogènes en resonance paramagnetique électronique. In: Campos R, Goñi J (eds) Advances in organic geochemistry 1975. Enadimsa, Madrid, pp 763–779Google Scholar
  81. Durand B, Niçaise G, Roucaché J, Vandenbroucke M, Hagemann HW (1977b) Etude geochimique d’une série de charbons. In: Campos R, Goñi J (eds) Advances in organic geochemistry 1975. Enadimsa, Madrid, pp 601–631Google Scholar
  82. Eglinton TI, Sinninghe Damsté JS, Kohnen MEL, de Leeuw JW, Larter SR, Patience RL (1990) Analysis of maturity-related changes in the organic sulfur composition of kerogens by flash pyrolysis-gas chromatography. In: Orr WL, White CM (eds) ACS 429- Geochemistry of sulfur in fossil fuels. Am Chem Soc, Washington, DC, pp 529–565Google Scholar
  83. Eglinton TI, Sinninghe Damsté JS, Pool W, de Leeuw JW, Eijkel G, Boon JJ (1992) Organic sulphur in macromolecular sedimentary organic matter. II. Analysis of distributions of sulphur-containing pyrolysis products using multivariate techniques. Geochim Cosmochim Acta 56: 1545–1560Google Scholar
  84. Emden R (1938) Why do we have winter heating? Nature 141: 908–909Google Scholar
  85. Emery KO, Hoggan D (1958) Gases in marine sediments. AAPG Bull 42: 2174–2188Google Scholar
  86. Ericsson I, Lattimer RP (1988) Pyrolysis nomenclature. J Anal Appi Pyrolysis 14: 219–221Google Scholar
  87. Espitalié J, LaPorte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A (1977) Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’volution. Rev Inst Fr Pét 32: 23–42Google Scholar
  88. Farrington JW, Davis AC, Tarafa ME, McCaffrey MA, Whelan J, Hunt JM (1988) Bitumen molecular maturity parameters in the Ikpikpuk well Alaska North Slope. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 303–310Google Scholar
  89. Foscolos AE, Powell TG, Gunther PR (1976) The use of clay minerals and inorganic and organic geochemical indicators for evaluating the degree of diagenesis and oil generating potential of shales. Geochim Cosmochim Acta 40: 953–966Google Scholar
  90. Frey M, Teichmüller M, Teichmüller R, Muilis J, Künzi B, Breitschmid A, Gruner U, Schwizer B (1980) Very low-grade metamorphism in external parts of the Central Alps: illite crystallinity, coal rank and fluid inclusion data. Eclogae Geol Helv 73: 173–203Google Scholar
  91. Gallango O, Cassani F (1992) Biological marker maturity parameters of marine crude oils and rock extracts from the Maracaibo Basin, Venezuela. Org Geochem 18: 215–224Google Scholar
  92. Ganz H, Kalkreuth W (1987) Application of infrared spectroscopy to the classification of kerogen-types and the evaluation of source rock and oil shale potential. Fuel 66: 708–711Google Scholar
  93. Garrigues P, de Sury R, Angelin ML, Bellocq J, Oudin JL, Ewald M (1988a) Relation of the methylated aromatic hydrocarbon distribution pattern to the maturity of organic matter in ancient sediments from the Mahakam delta. Geochim Cosmochim Acta 52: 375–384Google Scholar
  94. Garrigues P, Druez O, Rayez JC (1988b) Equilibre thermodynamique et géochimie organique des alkylnaphtalènes: vers un accord de principe? C R Acad Sci Paris. Sér II, 307: 921–926Google Scholar
  95. Garrigues P, Oudin JL, Parlanti E, Monin JC, Robcis S, Bellocq J (1990) Alkylated phenanthrene distribution in artificially matured kerogens from Kimmeridge clay and the Brent Formation (North Sea). In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 167–173Google Scholar
  96. Giraud A (1970) Application of pyrolysis and gas chromatography to geochemical characterisation of kerogen in sedimentary rocks. AAPG Bull 54: 439–451Google Scholar
  97. Girling GW (1963) Evolution of volatile hydrocarbons from coal. J Appi Chem 13: 77–91Google Scholar
  98. Goff JC (1984) Hydrocarbon generation and migration from Jurassic source rocks in the East Shetland Basin and Viking Graben of the northern North Sea. In: Demaison G, Murris RJ (eds) Petroleum geochemistry and basin evaluation. AAPG Mem 35: 273–302Google Scholar
  99. Goossens H, de Lange F, de Leeuw JW, Schenck PA (1988) The pristane formation index, a molecular maturity parameter. Confirmation in samples of the Paris Basin. Geochim Cosmochim Acta 52: 2439–2444Google Scholar
  100. Goossens H, de Leeuw JW, Schenck PA, Brassell SC (1984) Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312: 440–442Google Scholar
  101. Goossens H, Due A, de Leeuw JW, van de Graaf B, Schenck PA (1988) The Pristane Formation Index, a new molecular maturity parameter. A simple method to assess maturity by pyrolysis/evaporation-gas chromatography of unextracted samples. Geochim Cosmochim Acta 52: 1189–1193Google Scholar
  102. Gransch JA, Eisma E (1970) Characterisation of the insoluble organic matter of sediments by pyrolysis. In: Hobson GG, Speers GC (eds) Advances in organic geochemistry 1966. Pergamon Press, New York, pp 407–426Google Scholar
  103. Guthrie JM, Houseknecht DW, Johns WD (1986) Relationships among vitrinite reflectance, illite crystallinity, and organic geochemistry in Carboniferous strata, Ouchita Mountains, Oklahoma and Arkansas. AAPG Bull 70: 26–33Google Scholar
  104. Gutjahr CCM (1966) Carbonization measurements of pollen-grains and spores and their application. JJ Groen and Zoon, Leiden. 29 ppGoogle Scholar
  105. Hagemann H, Hollerbach A (1981) Spectral fluorometric analysis of extracts, a new method for the determination of the degree of maturity of organic matter in sedimentary rocks. Bull Centres Rech, Expl-Prod Elf-Aquitaine 5: 635–650Google Scholar
  106. Hanbaba P, Jüntgen H (1969) Zur Übertragbarkeit von Laboratoriums-Untersuchungen auf geochemische Prozesse der Gasbildung aus Steinkohle und über den Einfluß von Sauerstoff auf die Gasbildung. In: Schenck PA, Havenaar I (eds) Advances in organic geochemistry 1968. Pergamon Press, Oxford, pp 459–471Google Scholar
  107. Héroux Y, Chagnon A, Bertrand R (1979) Compilation and correlation of major thermal maturation indicators. AAPG Bull 63: 2128–2144Google Scholar
  108. Hills JR, Whitehead EV (1966) Triterpanes in optically active petroleum distillates. Nature 209: 977–979Google Scholar
  109. Ho TY, Rogers MA, Drushel HV, Koons CB (1974) Evolution of sulfur compounds in crude oils. AAPG Bull 58: 2338–2348Google Scholar
  110. Holden HW, Robb JC (1958) Mass spectrometry of substances of low volatility. Nature 182–340Google Scholar
  111. Honizhi-Hua, Li Hui-Xiang, Rullkötter J, Mackenzie AS (1986) Geochemical application of sterane and triterpane biological marker compounds in the Linyi Basin. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 433–439Google Scholar
  112. Hood A, Gutjahr CCM, Heacock RL (1975) Organic metamorphism and the generation of petroleum. AAPG Bull 59: 986–996Google Scholar
  113. Horsfield B (1984) Pyrolysis studies and petroleum exploration. In: Brooks J, Welte DH (eds) Advances in petroleum geochemistry, vol 1. Academic Press, London, pp 247–298Google Scholar
  114. Horsfield B (1989) Practical criteria for classifying kerogens: some observations from pyrolysis-gas chromatography. Geochim Cosmochim Acta 53: 891–901Google Scholar
  115. Horsfield B (1990) The rapid characterisation of kerogens according to source quality, compositional heterogeneity and thermal lability. Rev Palaeobot Palynol 65: 357–365Google Scholar
  116. Horsfield B, Douglas AG (1980) The influence of minerals on the pyrolysis of kerogens. Geochim. Cosmochim. Acta 44: 1119–1131Google Scholar
  117. Horsfield B, Düppenbecker SJ (1991) The decomposition of Posidoma Shale and Green River Shale kerogens using Microscale Sealed Vessel (MSSV) pyrolysis. J Anal Appi Pyrol 20: 107–123Google Scholar
  118. Horsfield B, Dembicki H, Ho TTY (1983) Some potential applications of pyrolysis to basin studies. J Geol Soc Lond 140: 431–443Google Scholar
  119. Horsfield B, Disko U, Leistner F (1989) The microscale simulation of maturation: outline of a new technique and its potential applications. Geol Rundsch 78: 361–374Google Scholar
  120. Horsfield B, Bharati S, Larter SR, Leistner F, Littke R, Schenk HJ, Dypvik H (1992 ) On the atypical petroleum-generating characteristics of alginite in the Cambrian Alum Shale. In: Schidlowski M, Kimberley MM, McKirdy DM, Trudinger PA, Golubic S (eds) Early organic evolution. Implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 257–266Google Scholar
  121. Horsfield B, Curry DJ, Bohacs K, Littke R, Rullkötter J, Schenk HJ, Radke M, Schaefer RG, Carroll AR, Isaksen G, Witte EG (1994) Organic geochemistry of freshwater and alkaline lacustrine environments, Green River Shale, Wyoming. In: Oygard K et al. (eds) Advances in organic geochemistry 1993. Org Geochem 22: 415–440Google Scholar
  122. Huck G, Karweil J (1955) Physikalisch-chemische Probleme der Inkohlung. Brennstoff-Chemie36: 1–11Google Scholar
  123. Hughes WB, Holba AG, Miller DE, Richardson JS (1985) Geochemistry of greater Ekofisk crude oils. In: Thomas BM et al. (eds) Petroleum geochemistry in exploration of the Norwegian Shelf. Norwegian Petroleum Society, Graham & Trotman, London, pp 75–92Google Scholar
  124. Hunt JM (1975) Origin of gasoline range hydrocarbons in the deep sea. Nature 288: 688–690Google Scholar
  125. Hussler G, Albrecht P (1983) C27–C29 Monoaromatic anthrasteroid hydrocarbons in Cretaceous black shales. Nature 304: 262–263Google Scholar
  126. Hussler G, Chappe B, Wehrung P, Albrecht P (1981) C27–C29 ring A monoaromatic steroids in Cretaceous black shales. Nature 294: 556–558Google Scholar
  127. Hutton AC, Cook AC (1980) Influence of alginite on the reflectance of vitnnite from Joadja New South Wales, and some other coals and oil shales containing alginite. Fuel 59: 711–714Google Scholar
  128. Hutton AC, Kantsier AJ, Cook AC, McKirdy DM (1980) Organic matter in oil shales. Aust Petr Expl Assoc 20: 44–67Google Scholar
  129. Ivanov VL, Golovko AK (1992) Phenanthrene hydrocarbons in USSR oils. Sib Khim Zh 1: 94–102 (in Russian)Google Scholar
  130. Jackson KS, McKirdy DM, Deckelmann JA (1984) Hydrocarbon generation in the Amadeus Basin, central Australia. APEA J 24: 43–65Google Scholar
  131. Jacob H (1989) Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). Int J Coal Geol 11: 65–79Google Scholar
  132. Jankowski B, Littke R (1986) Das organische Material der Ölschiefer von Messel. Geo wiss unserer Zeit 4: 73–80Google Scholar
  133. Joly D, Vasse L, Bordenave ML (1974) Application de méthodes d’analyse physique à la recherche de parenté entre différents pétroles du Moyen-Orient. In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Paris, pp 531–547Google Scholar
  134. Jonathan D, L’Hote G, du Rochet J (1975) Analyse géochimique des hydrocarbures légers par thermovaporisation. Rev Inst Fr Pét 30: 65–88Google Scholar
  135. Jones RW (1978) Kerogen maturation and petroleum generation. Nature 275: 567Google Scholar
  136. Kagi RI, Alexander R, Toh E (1990) Kinetics and mechanism of the cyclisation reaction of orthzomethylbiphenyls. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 161–166Google Scholar
  137. Kao J, Allinger NL (1977) Conformational analysis -122. Heats of formation of conjugated hydrocarbons by the Force Field Method. J Am Chem Soc 99: 975–986Google Scholar
  138. Karr C, Estep PA, Chang TCL, Comberiati JR (1967) Identification of distillable paraffins, olefins, aromatic hydrocarbons, and natural heterocyclics from a low-temperature bituminous coal tar. Bur Mines Bull 637: 1–198Google Scholar
  139. Kolaczkowska E, Slougui NE, Watt DS, Maruca RE, Moldowan JM (1990) Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 1033–1038Google Scholar
  140. Kübler B (1980) Les premiers stades de la diagenèse organique et de la diagenèse minérale (une tentative d’quivalence). II. Zonéographie par les transformations minéralogiques, comparaison avec la réflectance de la vitrinite, les extraits organiques et les gaz adsorbés. Bull Ver Schweiz Petrol-Geol-Ing 46: 1–22Google Scholar
  141. Kvalheim OM, Christy AA, Telnaes N, Bjorseth A (1987) Maturity determination of organic matter in coals using the methylphenanthrene distribution. Geochim Cosmochim Acta 51: 1883–1888Google Scholar
  142. Kvenvolden KA (1970) Evidence for transformation of normal fatty acids in sediments. In: Hobson GD, Speers GC (eds) Advances in organic geochemistry 1966. Pergamon Press Oxford, pp 335–366Google Scholar
  143. Landes KK (1967) Eometamorphism, and oil and gas in time and space. AAPG Bull 51: 828–841Google Scholar
  144. Larter SR (1984) Application of analytical pyrolysis techniques to kerogen characterization and fossil fuel exploration/exploitation. In: Voorhees KJ (ed) Analytical pyrolysis - techniques and applications. Butterworth, Guildford, pp 212–275Google Scholar
  145. Larter SR (1985). Integrated kerogen typing and the quantitative evaluation of petroleum source rocks. In: Thomas BM et al. (eds) Petroleum geochemistry in exploration of the Norwegian Shelf. Graham and Trotman, London, pp 269–286Google Scholar
  146. Larter S (1988) Some pragmatic perspectives in source rock geochemistry. Mar Petrol Geol 5: 194–204Google Scholar
  147. Larter SR (1989) Chemical models of vitrinite reflectance evolution. Geol Rundsch 78: 349–359Google Scholar
  148. Larter SR, Douglas AG (1980) A pyrolysis-gas chromatographic method for kerogen typing. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 579–584Google Scholar
  149. Larter SR, Horsfield B, Douglas AG (1977) Pyrolysis as a possible means of determining the petroleum-generating potential of sedimentary organic matter. In: Jones CER, Cramers CA (eds) Analytical pyrolysis. Elsevier, Amsterdam, pp 189–202Google Scholar
  150. Larter SR, Solli H, Douglas AG (1983) Phytol-containing melanoidins and their bearing on the fate of isoprenoid structures in sediments. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 513–523Google Scholar
  151. Larter SR, Solli H, Douglas AG, de Lange F, de Leeuw JW (1979) Occurrence and significance of prist-1-ene in kerogen pyrolysates. Nature 279: 405–408Google Scholar
  152. Le Tran K, van der Weide BM (1969) Détermination automatique du degré de carbonisation de la matière organique des roches. Bull Centre Rech, Pau SNPA 3: 449–457Google Scholar
  153. Le Tran K, Connan J, van der Weide B (1974) Probèmes relatifs a la formation d hydrocarbures de d’hydrogène sulfuré dans le bassin sud–ouest Aquitain. In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Pans, pp 761 – 789Google Scholar
  154. Leischner K, Welte DH, Littke R (1993) Fluid inclusions and organic maturity parameters as calibration tools in basin modelling. In: Doré AG, Augustson JH, Hermann C, Stewart DJ, Sylta O (eds) Basin modelling: advances and applications. NPF Spec Pubi 3. Elsevier, Amsterdam, pp 161 – 172Google Scholar
  155. Lerche I, McKenna T (1991) Pollen translucency as a thermal maturation indicator. J Petrol Geol 14: 19–36Google Scholar
  156. Lewan MD, Dolcater DL, Bjorøy M (1986) Effects of thermal maturation on steroid hydrocarbons as determined by hydrous pyrolysis of Phosphoria Retort Shale. Geochim Cosmochim Acta 50: 1977–1987Google Scholar
  157. Leythaeuser D, Welte DH (1969) Relation between distribution of heavy n–paraffins and codification in Carboniferous coals from the Saar district, Germany. In: Schenck PA, Havenaar I (eds) Advances in organic geochemistry 1968. Pergamon Press, New York, pp 429–442Google Scholar
  158. Leythaeuser D, Radke M, Willsch H (1988) Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. II Molecular composition of alkylated naphthalenes, phenanthrenes, benzo– and dibenzothiophenes. Geochim Cosmochim Acta 552: 2879–2891Google Scholar
  159. Li Taiming, Rullkötter J, Radke M, Schaefer RG, Welte DH (1987) Crude oil geochemistiy of the southern Songliao Basin, People’s Republic of China. Erdöl Kohle, Erdgas, Petrochem 40: 337–346Google Scholar
  160. Lichtfouse E, Riolo J, Albrecht P (1990) Occurrence of 2–methyl–, 3–methyltriaromatic steroid hydrocarbons in geological samples. Tetrahedron Lett 31: 3937–3940Google Scholar
  161. Lin R, Davis A (1988) A fluorogeochemical model for coal macérais. Org Geochem 12: 363–374Google Scholar
  162. Littke R (1987) Petrology and genesis of Upper Carboniferous seams from the Ruhr region, western Germany. Int J Coal Geol 7: 147–184Google Scholar
  163. Littke R, Baker DR, Leythaeuser D (1988) Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon, Oxford. Org Geochem 13: 549–559Google Scholar
  164. Littke R, Horsfield B, Leythaeuser D (1989) Hydrocarbon distribution in coals and dispersed organic matter of different macerai compositions and maturities. Geol Rundsch,78,(1): 391–410Google Scholar
  165. Lopatin NV (1971) Temperature and geologic time as factors in codification. Izv Akad Nauk Uzb SSR, Ser Geol 3: 95–106 (in Russian)Google Scholar
  166. Louda JW, Baker EW (1984) Perylene occurrence, alkylation and possible sources in deep–ocean sediments. Geochim Cosmochim Acta 48: 1043–1058Google Scholar
  167. Louis MC, Tissot BP (1967) Influence de la température et de la pression sur la formation des hydrocarbures dans les argiles à kérogène. In: Proc 7th World Petrol Congr, Mexico City, vol. 2. Elsevier, London, pp 47–60Google Scholar
  168. Lu ST, Kaplan IR (1989) Pyrolysis of kerogens in the absence and presence ot montmor– illonite II. Aromatic hydrocarbons generated at 200 and 300 °C. Org Geochem 14: 501–510Google Scholar
  169. Ludwig B, Hussler G, Wehrung P, Albrecht P (1981) C26–C29 Triaromatic steroid derivatives in sediments and petroleums. Tetrahedron Lett 22: 3313–3316Google Scholar
  170. Mackenzie AS (1984) Application of biological markers in petroleum geochemistry. In: Brooks J, Welte DH (eds) Advances in petroleum geochemistry, vol 1. Academic Press, London, pp 115–214Google Scholar
  171. Mackenzie AS, McKenzie D (1983) Isomerization and aromatization of hydrocarbons in sedimentary basins formed by extension. Geol Mag 120: 417–470Google Scholar
  172. Mackenzie AS, Maxwell JR (1981) Assessment of thermal maturation in sedimentary rocks by molecular measurements. In: Brooks J (ed) Organic maturation studies and fossil fuel exploration. Academic Press, London, pp 239–254Google Scholar
  173. Mackenzie AS, Patience RL, Maxwell JR, Vandenbroucke M, Durand B (1980) Molecular parameters of maturation in the Toarcian shales, Paris Basin, France. I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim Cosmochim Acta 44: 1709–1721Google Scholar
  174. Mackenzie AS, Hoffmann CF, Maxwell JR (1981) Molecular parameters of maturation in the Toarcian shales, Paris Basin, France. III. Changes in aromatic steroid hydrocarbons. Geochim Cosmochim Acta 45: 2369–2376Google Scholar
  175. Mackenzie AS, Brassell SC, Eglinton G, Maxwell JR (1982a) Chemical fossils: the geological fate of steroids. Science 217: 491–504Google Scholar
  176. Mackenzie AS, Lamb NA, Maxwell JR (1982b) Steroid hydrocarbons and the thermal history of sediments. Nature 295: 223–226Google Scholar
  177. Mackenzie AS, Maxwell JR, Coleman ML, Deegan CE (1983) Biological marker and isotope studies of North Sea crude oils and sediments. In: Proc 11th World Petrol Congr, London, vol. 2. Wiley, Chichester, pp 45–56Google Scholar
  178. Mackenzie AS, Beaumont C, Boutilier R, Rullkötter J (1985a) The aromatization and isomerization of hydrocarbons and the thermal and subsidence history of the Nova Scotia margin. Philos Trans R Soc Lond A 315: 203–232Google Scholar
  179. Mackenzie AS, Rullkötter J, Welte DH, Mankiewicz P (1985b) Reconstruction of oil formation and accumulation in North Slope, Alaska, using quantitative gas chromatography–mass spectrometry. In: Magoon LB, Claypool GE (eds) Alaska North Slope oil/rock correlation study. Am Assoc Petr Geol, Tulsa. AAPG Stud Geol 20: 319–377Google Scholar
  180. Mango FD (1991) The stability of hydrocarbons under the time–temperature conditions of petroleum genesis. Nature 352: 146–148Google Scholar
  181. Marchand A, Conrad J (1980) Electron paramagnetic resonance in kerogen studies. In: Durand B (ed) Kerogen – insoluble organic matter from sedimentary rocks. Editions Technip, Paris, pp 243–270Google Scholar
  182. Marzi R (1989) Kinetik und quantitative Analyse der Isomerisierung und Aromatisierung von fossilen Steroidkohlenwasserstoffen im Experiment und in natürlichen Probensequenzen. Berichte der Kernforschungsanlage Jülich, Nr 2264. KFA Jülich, ISSN 0336–0885. 169 ppGoogle Scholar
  183. Marzi R (1992) Comment on “The kinetics of sterane biological marker release and degradation processes during hydrous pyrolysis of vitrinite kerogen” by Abbott GD, Wang GY, Eglinton TI, Home AK, and Petch GS. Geochim Cosmochim Acta 56: 533–534Google Scholar
  184. Marzi R, Rullkötter J(1992) Qualitative and quantitative evolution and kinetics of biological marker transformations. Laboratory experiments and application to the Michigan Basin. In: Moldowan JM, Albrecht P, Philip RP (eds) Biological markers in sediments and petroleum. Prentice Hall, Englewood Cliffs, pp 18–41Google Scholar
  185. Marzi R, Rullkötter J, Perriman WS (1990) Application of the change of sterane isomer ratios to the reconstruction of geothermal histories: implications of the results of hydrous pyrolysis experiments. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 91–102Google Scholar
  186. Maxwell JR, Cox RE, Ackman RG, Hooper SN (1972) The diagenesis and maturation of phytol. The stereochemistry of 2,6,10,14–tetramethylpentadecane from an ancient sediment. In: Von Gaertner HR, Wehner H (eds) Advances in organic geochemistry 1971. Pergamon Press, Oxford, pp 277–291Google Scholar
  187. McHugh DJ, Saxby JD, Tardif JW (1976) Pyrolysis–hydrogenation gas–chromatography of carbonaceous material from Australian sediments. I. Some Australian coals. Chem Geol 17: 243–259Google Scholar
  188. McKenzie D, Mackenzie AS, Maxwell JR, Sajgó CS (1983) Isomerisation and aromatisation of hydrocarbons in streched sedimentary basins. Nature 301: 504–506Google Scholar
  189. McKirdy DM, McHugh DJ, Tardif JW (1980) Comparative analysis of stromatolitic and other microbial kerogens by pyrolysis–hydrogenation–gas chromatography (PHGC). In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Aust Acad Sci and Springer, Berlin Heidelberg New York, pp 187–200Google Scholar
  190. Meinschein WG (1961) Significance of hydrocarbons in sediments and petroleum. Geochim Cosmochim Acta 22: 58–64Google Scholar
  191. Michelsen JR, Khavari Khorasani G (1990) Monitoring chemical alterations of individual oil– prone macérais by means of microscopical fluorescence spectrometry combined with multivariate data analysis. Org Geochem 15: 179–192Google Scholar
  192. Moldowan JM, Fago FJ (1986) Structure and significance of a novel rearranged monoaromatic steroid hydrocarbon in petroleum. Geochim Cosmochim Acta 50: 343–351Google Scholar
  193. Monnier F, Powell TG, Snowdon LR (1983) Qualitative and quantitative aspects of gas generation during maturation of sedimentary organic matter. Examples from Canadian Frontier Basins. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 487–495Google Scholar
  194. Morandi JR, Jensen H (1966) Composition of porphyrins from shale oil, oil–shale, and petroleum by absorption and mass spectroscopy. J Chem Eng Data Ser 11: 81–88Google Scholar
  195. Morishima M, Matsubayashi H (1978) ESR diagrams: a method to distinguish vitnmte macérais. Geochim Cosmochim Acta 42: 537–540Google Scholar
  196. Mukhopadhyay PK (1992) Maturation of organic matter as revealed by microscopic methods: applications and limitations of vitrinite reflectance, and continuous spectral and pulsed laser fluorescence spectroscopy. In: Wolf KH, Chilingarian GV (eds) Diagenesis. III. Developments in sedimentology, 47. Elsevier, Amsterdam, pp 435–510Google Scholar
  197. Murrel JN, Harget AJ (1972) Semi–empirical self–consistent–field molecular orbital theory of molecules. Wiley, New York, 180 ppGoogle Scholar
  198. Muscio GPA, Horsfield B (1996) Neoformation of inert carbon during the natural maturation of a marine source rock; Bakken Shale, Williston Basin. Energy Fuels 10: 10–18Google Scholar
  199. Muscio GPA, Horsfield B, Welte DH (1991) Compositional changes in the macromolecular organic matter (kerogens, asphaltenes and resins) of a naturally matured source rock sequence from northern Germany as revealed by pyrolysis methods. In: Manning DAC (ed) Organic geochemistry – advances and applications in the natural environment. Manchester University Press, Manchester, pp 447–449Google Scholar
  200. Nip M, Tegelaar EW, Brinkhuis H, de Leeuw JW, Schenck PA, Holloway P.J. (1986) Analysis of modern and fossil plant cuticles by Curie point Py–GC and Curie point Py–GC–MS: recognition of a new, highly aliphatic and resistant biopolymer. In: Leythaeuser D, Rullkotter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 769–778Google Scholar
  201. Nöth S (1991) Die Conodontendiagenese als Inkohlungsparameter und ein Vergleich unterschiedlich sensitiver Diageneseindikatoren am Beispiel von Triassedimenten Nord– und Mitteldeutschlands. Boch Geol Geotech Arb 37: 1–169Google Scholar
  202. Nunn JA, Sleep NH, Moore WE (1984) Thermal subsidence and generation of hydrocarbons in Michigan Basin. AAPG Bull 68: 296–315Google Scholar
  203. Oakwood TS, Shriver DS, Fall HH, McAleer WJ, Wunz PR (1952) Optical activity of petroleum. I E Chem 44: 2568–2570Google Scholar
  204. Oberlin A, Boulmier JL, Durand B (1974) Electron microscope investigation of the structure of naturally and artificially metamorphosed kerogen. Geochim Cosmochim Acta 38: 647–650Google Scholar
  205. Ocampo R, Callot HJ, Albrecht P (1987) Evidence for porphyrins of bacterial and algal origin in oil shale. In: Filby RH, Branthaver JF (eds) Metal complexes in fossil fuels – geochemistry, characterization, and processing. ACS Symp Ser 344. Am Chem Soc, Washington, pp 68–73Google Scholar
  206. Oku A, Yuzen Y (1975) Acid–catalyzed rearrangements of polymethylnaphthalenes. J Org Chem 40: 3850–3857Google Scholar
  207. Oygard K, Larter SR, Senftle J (1988) The control of maturity and kerogen type on analytical pyrolysis data. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 1153–1162Google Scholar
  208. Patience RL, Rowland SJ, Maxwell JR (1978) The effect of maturation on the configuration of pristane in sediments and petroleum. Geochim Cosmochim Acta 42: 1871–1875Google Scholar
  209. Payzant JD, Mojelsky TW, Strausz OP (1989) Improved methods for the selective isolation of the sulfide and thiophenic classes of compounds from petroleum. Energy Fuels 3: 449–454Google Scholar
  210. Peakman TM, Maxwell JR (1988) Early diagenetic pathways of steroid alkenes. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 583–592Google Scholar
  211. Peters KE, Moldowan JM, Sundararaman P (1990) Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey phosphatic and siliceous members. Org Geochem 15: 249–265Google Scholar
  212. Peters KE, Rohrback BG, Kaplan IR (1980) Laboratory–simulated thermal maturation of recent sediments. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press Oxford, pp 547–558Google Scholar
  213. Philippi GT (1965) On the depth, time and mechanism of petroleum generation. Geochim Cosmochim Acta 29: 1021–1049Google Scholar
  214. Philippi GT (1975) The deep subsurface temperature controlled origin of the gaseous and gasoline–range hydrocarbons of petroleum. Geochim Cosmochim Acta 39: 1353–1373Google Scholar
  215. Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw–Hill, New York, 214 ppGoogle Scholar
  216. Powell TG (1978) An assessment of the hydrocarbon source rock potential of the Canadian Arctic Islands. Geol Survey Can Pap, Calgary, 78–12, 82ppGoogle Scholar
  217. Powell TG, Foscolos AE, Gunther PR, Snowdon LR (1978) Diagenesis of organic matter and fine clay minerals: a comparative study. Geochim Cosmochim Acta 42: 1181–1197Google Scholar
  218. Pradier B, Largeau C, Derenne S, Martinez L, Bertrand P, Pouet Y (1990) Chemical basis of fluorescence alteration of crude oils and kerogens. I. Microfluorimetry of an oil and its isolated fractions; relationships with chemical structure. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 451–460Google Scholar
  219. Price LC (1983) Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleogeothermometer. J Petr Geol 6: 5–38Google Scholar
  220. Price LC, Clayton JL, Rumen L (1981) Organic geochemistry of the 9.6 km Bertha Rogers No. 1. well, Oklahoma. Org Geochem 3: 59–77Google Scholar
  221. Pusey WC (1973) The ESR–kerogen method – how to evaluate potential gas and oil source rocks. World Oil 176: 71–75Google Scholar
  222. Püttmann W, Eckardt CB (1989) Influence of an intrusion on the extent of isomerism in acyclic isoprenoids in the Permian Kupferschiefer of the Lower Rhine Basin, N.W. Germany. Org Geochem 14: 651–658Google Scholar
  223. Quigley TM, Mackenzie AS, Gray JR (1987) Kinetic theory of petroleum generation. In: Doligez B (ed) Migration of hydrocarbons in sedimentary basins. Editions Technip, Paris, pp 131–171Google Scholar
  224. Radke M (1987) Organic geochemistry of aromatic hydrocarbons. In: Brooks J, Welte D (eds) Advances in petroleum geochemistry, vol 2. Academic Press, London, pp 141–207Google Scholar
  225. Radke M (1988) Application of aromatic compounds as maturity indicators in source rocks and crude oils. Mar Petrol Geol 5: 224–236Google Scholar
  226. Radke M, Welte DH (1983) The Methylphenanthrene Index (MPI): A maturity parameter based on aromatic hydrocarbons. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 504–512Google Scholar
  227. Radke M, Willsch H (1994) Extractable alkyldibenzothiophenes in Posidonia Shale (Toarcian) source rocks: relationship of yields to petroleum formation and expulsion. Geochim Cosmochim Acta 58: 5223–5244Google Scholar
  228. Radke M, Schaefer RG, Leythaeuser D, Teichmüller M (1980) Composition of organic matter in coals: Relation to rank and liptinite fluorescence. Geochim Cosmochim Acta 44: 1787– 1800Google Scholar
  229. Radke M, Welte DH, Willsch H (1982a) Geochemical study of a well in the Western Canada Basin: relation of aromatic distribution pattern to maturity of organic matter. Geochim Cosmochim Acta 46: 1–10Google Scholar
  230. Radke M, Willsch H, Leythaeuser D, Teichmüller M (1982b) Aromatic components of coal: relation of distribution pattern to rank. Geochim Cosmochim Acta 46: 1831–1848Google Scholar
  231. Radke M, Leythaeuser D, Teichmüller M (1984) Relationship between rank and composition of aromatic hydrocarbons for coals of different origins. In: Schenck PA, de Leeuw JW, Lijmbach GWM (eds) Advances in organic geochemistry 1983. Pergamon Press, Oxford. Org Geochem 6: 423–430Google Scholar
  232. Radke M, Welte DH, Willsch H (1986) Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type. In: Leythaeuser D, Rullkötter J (eds) Advances in Organic Geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 51–63Google Scholar
  233. Radke M, Welte DH, Willsch H (1991) Distribution of alkylated aromatic hydrocarbons and dibenzothiophenes in sediments of the Upper Rhine Graben. Chem Geol 93: 325–341Google Scholar
  234. Radke M, Rullkötter J, Vriend SP (1994) Distribution of naphthalenes in crude oils from the Java Sea: source and maturation effects. Geochim Cosmochim Acta 58: 3675–3689Google Scholar
  235. Redding CE, Schoell M, Monin JC, Durand B (1980) Hydrogen and carbon isotopie composition of coals and kerogens. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 711–723Google Scholar
  236. Reed J, Illich HA, Horsfield B (1986) Biochemical evolutionary significance of Ordovician oils and their source. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 347–358Google Scholar
  237. Regtop RA, Crisp PT, Ellis J, Fookes CJR (1986) 1-Pristene as a precursor for 2-pristene in pyrolysates of oil shale from Condor, Australia. Org Geochem 9: 233–236Google Scholar
  238. Requejo AG (1994) Maturation of petroleum source rocks. II. Quantitative changes in extractable hydrocarbon content and composition associated with hydrocarbon generation. Org Geochem 21: 91–105Google Scholar
  239. Requejo AG, Gray NR, Freund H, Thomann H, Melchior MT, Gebhard LA, Bernardo M, Pictroski CF, Hsu CS (1992) Maturation of petroleum source rocks. 1. Changes in kerogen structure and composition associated with hydrocarbon generation. Energy Fuels 6: 203–214Google Scholar
  240. Retkofsky AL, Stark JM, Friedel RA (1968) Electron spin resonance in American coals. Anal Chem 40: 1699–1704Google Scholar
  241. Riolo J, Albrecht P (1985) Novel rearranged ring C monoaromatic steroid hydrocarbons in sediments and petroleum. Tetrahedron Lett 26: 2701–2704Google Scholar
  242. Riolo J, Ludwig B, Albrecht P (1985) Synthesis of ring C monoaromatic steroid hydrocarbons occurring in geological samples. Tetrahedron Lett 26: 2697–2700Google Scholar
  243. Riolo J, Hussler G, Albrecht P, Connan J (1986) Distribution of aromatic steroids in geological samples: their evaluation as geochemical parameters. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 981–990Google Scholar
  244. Robin P (1975) Caractérisation des kérogènes et de leur évolution par spectroscopie infrarouge. PhD Thesis, Université Catholique de Louvain, 162 ppGoogle Scholar
  245. Rohrback RG (1983) Crude oil geochemistry of the Gulf of Suez. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 39–48Google Scholar
  246. Romovácek J, Kubát J (1968) Characterization of coal substance by pyrolysis–gas chromatography. Anal Chem 40: 1119–1126Google Scholar
  247. Ross JV, Bustin RM (1990) The role of strain energy in creep graphitization of anthracite. Nature 343: 58–60Google Scholar
  248. Ross JV, Bustin RM, Rouzaud JN (1991) Graphitization of high rank coals – the role of shear strain: experimental considerations. Org Geochem 585–596Google Scholar
  249. Rouxhet PG, Robin PL (1978) Infrared study of the evolution of kerogens of different origins during catagenesis and pyrolysis. Fuel 57: 533–540Google Scholar
  250. Rouxhet PG, Robin PL, Niçaise G (1980) Characterization of kerogens and of their evolution by infrared spectroscopy. In: Durand B (ed) Kerogen – insoluble organic matter from sedimentary rocks. Éditions Technip, Paris, pp 163–190Google Scholar
  251. Rovere CE, Crisp PT, Ellis J, Bolton PD (1983) Chemical characterization of shale oil from Condor, Australian. Fuel 62: 1274–1282Google Scholar
  252. Rullkötter J, Leythaeuser D, Horsfield B, Littke R, Mann U, Müller PJ, Radke M, Schaefer RG, Schenk HJ, Schwochau K, Witte EG, Welte DH (1988) Organic matter maturation under the influence of a deep intrusive heat source: a natural experiment for quantification of hydrocarbon generation and expulsion from a petroleum source rock (Toarcian shale, northern Germany). In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 847–856Google Scholar
  253. Rullkötter J, Mackenzie AS, Welte DH, Leythaeuser D, Radke M (1984) Quantitative gas chromatorgraphy–mass spectrometry analysis of geological samples. In: Schenck PA, de Leeuw JW, Lijmbach GWM (eds) Advances in organic geochemistry 1983. Pergamon Press, Oxford. Org Geochem 6: 817–827Google Scholar
  254. Rullkötter J, Marzi R (1988) Natural and artificial maturation of biological markers in a Toarcian shale from northern Germany. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 639–645Google Scholar
  255. Rullkötter J, Marzi R (1989) New aspects of the application of sterane isomerization and steroid aromatization to petroleum exploration and the reconstruction of geothermal histories of sedimentary basins. Prepr, Div Pet Chem, Am Chem Soc 34: 126–131Google Scholar
  256. Rullkötter J, Orr WL (1989) A comparative study of thermal maturation effects in sulfur–rich and less sulfur–rich crude oils of Tertiary age from California Basins. 14th Int Meet on Organic geochemistry, Paris. Book of Abstracts, no 134Google Scholar
  257. Rullkötter J, Welte DH (1983) Maturation of organic matter in areas of high heat flow: A study of sediments from DSDP Leg 63, offshore California, and Leg 64, Gulf of California. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 438–448Google Scholar
  258. Rullkötter J, Spiro B, Nissenbaum A (1985) Biological marker characteristics of oils and asphalts from carbonate source rocks in a rapidly subsiding graben, Dead Sea, Israel. Geochim Cosmochim Acta 49: 1350–1357Google Scholar
  259. Rullkötter J, Marzi R, Meyers PA (1992) Biological markers in Paleozoic sedimentary rocks and crude oils from the Michigan Basin: reassessment of sources and thermal history of organic matter. In: Schidlowski M, Kimberley MM, McKirdy DM, Trudinger PA, Golubic S (eds) Early organic evolution: implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 324–335Google Scholar
  260. Sajgó Cs, Lefler J (1986) A reaction kinetic approach to the temperature–time history of sedimentary basins. In: Buntebarth F, Stegena L (eds) Paleogeothermics. Lecture Notes in Earth Sciences, vol 5. Springer, Berlin Heidelberg New York, pp 119–151Google Scholar
  261. Schaefer RG, Littke R (1988) Maturity–related compositional changes in the low–molecular– weight hydrocarbon fraction of Toarcian shales. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 887–892Google Scholar
  262. Schaefer RG, Welte DH, Pooch H (1984) Geochemistry of low molecular weight hydrocarbons in two exploration wells of the Elmworth gas field (Western Canada Basin). In: Schenck PA, de Leeuw JW, Lijmbach GWM (eds) Advances in organic geochemistry 1983. Pergamon Press, Oxford. Org Geochem 6: 695–701Google Scholar
  263. Schaefer RG, Schenk HJ, Hardelauf H, Harms R (1990) Determination of gross kinetic parameters for petroleum formation from Jurassic source rocks of different maturity levels by means of laboratory experiments. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 115–120Google Scholar
  264. Scheidt G, Littke R (1989) Comparative organic petrology of interlayered sandstones, silt– stones, mudstones and coals in the Upper Carboniferous Ruhr basin, northwest Germany, and their thermal history and methane generation. Geol Rundsch 78: 375–390Google Scholar
  265. Schenk HJ, Witte EG, Littke R, Schwochau K (1990) Structural modifications of vitrinite and alginite concentrates during pyrolytic maturation at different heating rates. A combined infrared, 13C NMR and microscopical study. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 943–950Google Scholar
  266. Schoell M (1984) Wasserstoff– und Kohlenstoffisotope in organischen Substanzen, Erdölen und Erdgasen. Geol Jahrb D67: 1 – 161Google Scholar
  267. Schoell M, Teschner M, Wehner H, Durand B, Oudin JL (1983) Maturity related biomarker and stable isotope variations and their application to oil/source rock correlation in the Mahakam Delta, Kalimantan. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 156–163Google Scholar
  268. Seifert WK, Moldowan JM (1978) Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochim Cosmochim Acta 42: 77–92Google Scholar
  269. Seifert WK, Moldowan JM (1980) The effect of thermal stress on source rock quality as measured by hopane stereochemistry. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 229–237Google Scholar
  270. Seifert WK, Moldowan JM (1981) Paleoreconstruction by biological markers. Geochim Cosmochim Acta 45: 783–794Google Scholar
  271. Senftie JT, Larter SR, Bromley BW, Brown JH (1986) Quantitative chemical characterization of vitrinite concentrates using pyrolysis–gas chromatography. Rank variation of pyrolysis products. Org Geochem 9: 345–350Google Scholar
  272. Shi Ji–Yang, Mackenzie AS, Alexander R, Eglinton G, Gowar AP, Wolff GA, Maxwell JR (1982) A biological marker investigation of petroleums and shales from the Shengli oilfield, the People’s Republic of China. Chem Geol 35: 1–31Google Scholar
  273. Shibaoka M, Steven JR (1977) Characterization of kerogen by electron spin resonance. Fuel 56: 458–459Google Scholar
  274. Silverman SR (1964) Investigations of petroleum origin and mechanisms by carbon isotope studies. In: Miller SL, Wasserburg GJ (eds) Isotopie and cosmic chemistry. North–Holland, Amsterdam, pp 92–102Google Scholar
  275. Sinninghe Damsté JS, Eglinton TI, de Leeuw JW, Schenck PA (1989) Organic sulphur in macromolecular sedimentary organic matter. 1. Structure and origin of sulphur containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis. Geochim Cosmochim Acta 53: 873–889Google Scholar
  276. Smith PV (1952) The occurrence of hydrocarbons in recent sediments trom the bult of Mexico. Science 116: 437–439Google Scholar
  277. Snowdon LR (1980) Resinite – a potential petroleum source in the Upper Cretaceous/Tertiary of the Beaufort–Mackenzie Basin. Can Soc Petrol Geol Mem 6: 509–521Google Scholar
  278. Snowdon LR, Roy KJ (1975) Regional organic metamorphism in the Mesozoic strata of the Sverdrup Basin. Bull Can Pet Geol 23: 131–148Google Scholar
  279. Snowdon LR, Brooks PW, Williams GK, Goodarzi F (1987) Correlation of Canol Formation source rock with oil from Norman Wells. Org Geochem 11: 529–548Google Scholar
  280. Solli H, Schou L, Krane J, Skjetne T, Leplat P (1985) Characterization of sedimentary organic matter using nuclear magnetic resonance and pyrolysis techniques. In: Thomas BM et al. (eds) Petroleum geochemistry in exploration of the Norwegian Shelf, Norwegian Petroleum Society, Graham & Trotman, London, pp 309–317Google Scholar
  281. Sommerfeld A (1965) Thermodynamik und Statistik, 3te Aufl., Vorlesungen über theoretische Physik, Bd. 5. Akademische Verlagsgesellschaft, Leipzig, 338 ppGoogle Scholar
  282. Stach E, Teichmüller M, Mackowsky MTh, Taylor GH, Chandra D, Teichmuller R (1982) Stach’s textbook of coal petrology, 3rd edn. Gebrüder Bornträger, BerlinGoogle Scholar
  283. Staplin FL (1977) Interpretation of thermal history from color of particulate organic matter — a review. Palynology 1: 9–18Google Scholar
  284. Stephens JF (1979) Coal as a C-H-O ternary system. 1. Geochemistry. Fuel 58: 489–494Google Scholar
  285. Stevens NP (1956) Origin of petroleum – a review. AAPG Bull 40: 51–61Google Scholar
  286. Sundararaman P, Raedeke LD (1993) Vanadyl porphyrins in exploration: maturity indicators for source rocks and oils. Appi Geochem 8: 245–254Google Scholar
  287. Sundararaman P, Biggs WR, Reynolds JG, Fetzer JC (1988) Vanadylporphyrins, indicators of kerogen breakdown and generation of petroleum. Geochim Cosmochim Acta 52: 2337–2341Google Scholar
  288. Suzuki N (1984) Estimation of maximum temperature of mudstone by two kinetic parameters; epimerization of sterane and hopane. Geochim Cosmochim Acta 48: 2273–2282Google Scholar
  289. Sweeney JJ, Burnham AK (1989) Evaluation of a simple model of vitrimte reflectance based on chemical kinetics. AAPG Bull 74: 1559–1570Google Scholar
  290. Tegelaar EW, Matthezing RM, Jansen JBH, Horsfield B, de Leeuw JW (1989a) Possible origin of H–alkanes in high–wax crude oils. Nature 342: 529 – 531Google Scholar
  291. Tegelaar EW, de Leeuw JW, Derenne S, Largeau C (1989b) A reappraisal of kerogen formation. Geochim Cosmochim Acta 53: 3103 – 3106Google Scholar
  292. Teichmüller M (1982) Origin of pétrographie constituents of coal. In: Stach E, Mackowsky Ml, Teichmüller M, Taylor GH, Chandra D, Teichmüller R (eds) Stach’s textbook of coal petrology. Bornträger, Stuttgart, pp 219–294Google Scholar
  293. Teichmüller M (1986) Organic petrology of source rocks, history and state of the art. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 581–599Google Scholar
  294. ten Haven HL, de Leeuw JW, Peakman TM, Maxwell JR (1986) Anomalies in steroid and hopanoid maturity indices. Geochim Cosmochim Acta 50: 853–855Google Scholar
  295. ten Haven HL, Littke R, Rullkötter J (1989) Hydrocarbon biological markers in Carboniferous coals of different maturities from the Ruhr area (northwest Germany). Prepr, Div Ret Chem, Am Chem Soc 34: 149–153Google Scholar
  296. Thompson KFM (1979) Light hydrocarbons in subsurface sediments. Geochim Cosmochim Acta 43: 657–672Google Scholar
  297. Ting FTC (1981) Uniaxial and biaxial vitrinite reflectance models and their relationship to palaeotectonics. In: Brooks J (ed) Organic maturation studies and fossil fuel exploration. Academic Press, London, pp 379–392Google Scholar
  298. Tissot BP (1969) Premières données sur les mécanismes et la cinétique de la formation du pétrole dans les sédiments. Simulation d’un schéma réactionnel sur ordinateur. Rev Inst Fr Pét 24: 470–501Google Scholar
  299. Tissot B, Welte DH (1984) Petroleum formation and occurrence, 2nd edn., Springer, Berlin Heidelberg New York, 699 ppGoogle Scholar
  300. Tissot B, Oudin JL, Pelet R (1972) Critères d’origine et d’volution des pétroles. Application à l’tude géochimique des bassins sédimentaires. In: Von Gaertner HR, Wehner H (eds) Advances in organic geochemistry 1971. Pergamon Press, Oxford, pp 113–134Google Scholar
  301. Tissot B, Durand B, Espitalié J, Combaz A (1974) Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bull 58: 499–506Google Scholar
  302. Tissot B, Deroo G, Hood A (1978) Geochemical study of the Uinta Basin: formation of petroleum from the Green River formation. Geochim Cosmochim Acta 42: 1469–1485Google Scholar
  303. Tissot BP, Pelet R, Ungerer P (1987) Thermal history of sedimentary basins, maturity indices and kinetics of oil and gas generation. AAPG Bull 71: 1445–1466Google Scholar
  304. Tupper NP, Burckhardt DM (1990) Use of the Methylphenanthrene Index to characterize expulsion of Cooper and Eromanga Basin oils. APEA J 30: 373–385Google Scholar
  305. Ujiié Y (1978) Kerogen maturation and petroleum genesis. Nature 272: 438–439, 275: 568Google Scholar
  306. Ungerer P, Pelet R (1987) Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327: 52–54Google Scholar
  307. van Aarssen BGK, de Leeuw JW, Horsfield B (1991) A comparative study of three different pyrolysis methods used to characterise a biopolymer isolated from fossil and extant Dammar resins. J Anal Appi Pyrol 20: 125–139Google Scholar
  308. van de Meent D, Brown SC, Philp RP, Simoneit BRT (1980) Pyrolysis–high resolution gas chromatography and pyrolysis gas chromatography – mass spectrometry of kerogen precursors. Geochim Cosmochim Acta 44: 999–1014Google Scholar
  309. van Duin ACT, Baas JMA, van de Graaf B, de Leeuw JW, Bastow TP, Alexander R (1993) Comparison of experimental and calculated thermodynamic values of alkylnaphthalenes; an approach to recognize maturity changes in source rocks and crude oils. In: OØygard K (ed) Organic geochemistry – Poster Sessions from the 16th Int Meet on Organic geochemistry, Stavanger 1993. Falch Hurtigtrykk, Oslo, pp 194–197Google Scholar
  310. van Graas G, de Leeuw JW, Schenck PA (1980) Analysis of coals of different rank by Curie–point pyrolysis–mass spectrometry and Curie–point pyrolysis–gas chromatography–mass spectrometry. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 485–494Google Scholar
  311. van Graas G, de Leeuw JW, Schenck PA, Haverkamp J (1981) Kerogen of Toarcian shales of the Paris Basin. A study of its maturation by flash pyrolysis techniques. Geochim Cosmochim Acta 45: 2465–2474Google Scholar
  312. van Graas G, Baas JMA, van de Graaf B, de Leeuw JW (1982) Theoretical organic geochemistry I. The thermodynamic stability of several cholestane isomers calculated by molecular mechanics. Geochim Cosmochim Acta 46: 2399–2402Google Scholar
  313. van Krevelen DW (1993) Coal – typology, physics, chemistry, constitution, 3rd edn., Elsevier, Amsterdam, 979 ppGoogle Scholar
  314. Vassoevich NB, Visotski IV, Guseva AN, Olenin VB (1967) Hydrocarbons in the sedimentary mantle of the earth. In: Proc 7th World Petr Congr, Mexico City, vol. 2. Elsevier, London, pp 37–45Google Scholar
  315. Vassoyevich NB, Korchagina Yul, Lopatin NV, Chernyshev VV (1969) Principal phase of oil formation. Moscov Univ Vestnik 6: 3–27 (in Russian). Engl trans Int Geol Rev 12: 1276–1296 (1970)Google Scholar
  316. Velde B, Espitalié J (1989) Comparison of kerogen maturation and illite/smectite composition in diagenesis. J Petrol Geol 12: 103–110Google Scholar
  317. Waples DW (1980) Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration. AAPG Bull 64: 916–926Google Scholar
  318. Weiß HM (1985) Geochemische und petrographische Untersuchungen am organischen Material kretazischer Sedimentgesteine aus dem Deep Basin, Westkanada. PhD Thesis, Rheinisch–Westfälische Technische Hochschule, Aachen, 261 ppGoogle Scholar
  319. Welte DH (1970) Organischer Kohlenstoff und die Entwicklung der Photosynthese auf der Erde. Naturwissenschaften 57: 17–23Google Scholar
  320. Welte DH, Waples D (1973) Die Bevorzugung geradzahliger n–Alkane in Sedimentgesteinen. Naturwissenschaften 60: 516–517Google Scholar
  321. Welte DH, Schaefer RG, Stoessinger W, Radke M (1984) Gas generation and migration in the Deep Basin of Western Canada. Mitt Geol–Paläontol Inst Univ Hamburg 56: 263–285. AAPG Mem 38: 35–47Google Scholar
  322. Wenger LM, Baker DR (1987) Variations in vitrinite reflectance with organic facies – examples from Pennsylvanian cyclothems of the Midcontinent, U.S.A. Org Geochem 11: 411–416Google Scholar
  323. White D (1915) Geology: Some relations in origin between coal and petroleum. J Wash Acad Sci 5: 189–212Google Scholar
  324. Wilcoxon BR, Ferrell RE, Sassen R, Wade WJ (1990) Illite polytype distribution as an inorganic indicator of thermal maturity in the Smackover formation of the Manila embayment, southwest Alabama. Org Geochem 15: 1–8Google Scholar
  325. Wilson MA, Philp RP, Gillam AH, Gilbert TD, Tatle KR (1983) Comparison of the structures of humic substances from aquatic and terrestrial sources by pyrolysis gas chromatography– mass spectrometry. Geochim Cosmochim Acta 47: 497–502Google Scholar
  326. Wilson MA, Pugmire RJ, Karas J, Alemany LB, Woolfenden WR, Grant DM, Given PH (1984) Carbon distribution in coals and coal macérais by cross polarization magic angle spinning carbon–13 nuclear magnetic resonance spectrometry. Anal Chem 56: 933–943Google Scholar
  327. Yalçin MN, Welte DH (1988) The thermal evolution of sedimentary basins and significance for hydrocarbon generation. TAPG Bull 1 /1: 12–26Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Radke
    • 1
  • B. Horsfield
    • 1
  • R. Littke
    • 1
  • J. Rullkötter
    • 2
  1. 1.Institut für Erdöl und Organische Geochemie (ICG-4)Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Institut für Chemie und Biologie des Meeres (ICBM)Universität OldenburgOldernburgGermany

Personalised recommendations