Teleost renal function:regulation by arginine vasotocin and by angiotensins

  • J. A. Brown
  • R. J. Balment
Conference paper


Euryhaline teleosts are able to live in or adapt to a wide range of environmental salinities and maintain relatively constant plasma osmolality. Adaptive changes in renal function play an important part in this euryhalinity (along with changes in gill and gut transport). In dilute media, high rates of urine output eliminate the osmotic influx of water at the gills, whereas in media more concentrated than plasma, urine flow rates are generally reduced, reflecting reduced glomerular filtration rates (Rankin, Henderson & Brown, 1983). Physiological control of these changes in renal function is poorly understood but is likely to involve endocrine and paracrine factors/systems. The recently described atrial natriuretic peptides (Takei, 1994) have been reported to be diuretic and natriuretic in rainbow trout and toadfish (Duff & Olson, 1986; Lee & Malvin, 1987). However, the physiological significance of these observations awaits clarification as these studies employed heterologous peptides and it is unclear how the doses employed relate to the recent first description of circulating levels of these peptides in the Japanese eel (Kaiya & Takei, 1996). The pituitary hormones, arginine vasotocin (AVT) or isotocin and the renin-angiotensin system (acting through the active angiotensin peptides) have long been implicated in the adaptive regulation of teleost kidney function, though this lacks clear definition. Investigation of the circumstances in which release of these hormones is initiated or in which local systems are activated is of importance in understanding their involvement in control of physiological function. A multiplicity of approaches has been applied in recent years from which we are beginning to gain insights into the role that AVT and angiotensins play in the control of renal function in fish.


Glomerular Filtration Rate Rainbow Trout Angiotensin Converting Enzyme Atrial Natriuretic Peptide Renin Angiotensin System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amer, S. (1995). Endocrine and paracrine control of renal function in the in situ perfused trunk of the rainbow trout. PhD thesis, University of Exeter.Google Scholar
  2. Amer, S. & Brown, J.A. (1995). Glomerular actions of arginine vasotocin in the in situ perfused trout kidney. Am. J. Physiol. 269, R775–780.PubMedGoogle Scholar
  3. Babiker, M.M. & Rankin, J.C. (1978). Neurohypophysial hormone control of kidney function in the European eel (Anguilla anguilla) adapted to seawater or freshwater. J. Endocrinol. 78, 347–358.CrossRefGoogle Scholar
  4. Balment, R.J. & Carrick, S. (1985). Endogenous renin-angiotensin system and drinking behaviour in the flounder. Am. J. Physiol. 248, R157–R160.PubMedGoogle Scholar
  5. Balment, R.J., Warne, J.M., Tierney, M. & Hazon, N. (1993). Arginine vasotocin and fish osmoregulation. Fish Physiol. Biochem. 11, 189–194.CrossRefGoogle Scholar
  6. Brown, J.A. (1976). Development and application of methods for the study of renal function in lower vertebrates. PhD thesis, University of Sheffield. UK.Google Scholar
  7. Brown, J.A., Oliver, J.A., Henderson, I.W. and Jackson, B.A. (1980). Angiotensin and single nephron glomerular function in the trout, Salmo gairdneri. Am J. Physiol. 239, R509–514.Google Scholar
  8. Brown, J.A., Paley, R.K., Amer, S. & Aves, S.J. (1995). Evidence for an intrarenal renin-angiotensin system in the rainbow trout. J Endocrinol. 147 S, P79.Google Scholar
  9. Cobb, C.S. & Brown, J.A. (1994). Characterisation of angiotenin II binding to glomeruli from rainbow trout Oncorhynchus mykiss adapted to fresh water and seawater. Gen. Comp. Endocrinol. 94: 104–112.PubMedCrossRefGoogle Scholar
  10. Cowley, A.W.Jr. (1988). Vasopressin and blood pressure regulation. Clin Physiol. Biochem 6, 150–162.PubMedGoogle Scholar
  11. Duff, D.W. & Olson, K.R. (1986). Trout vascular and renal responses to atrial natriuretic factor and heart extract. Am. J. Physiol. 251, R639–R642.PubMedGoogle Scholar
  12. Dunne, J.B. & Rankin, J.C. (1992). Effects of natriuretic peptide and All on salt and water excretion by the perfused rainbow trout kidney. J. Physiol., 446, p92.Google Scholar
  13. Gray, J.C. & Brown, J.A. (1985). Renal and cardiovascular effects of angiotensin II in the rainbow trout, Salmo gairdneri. Gen Comp Endocrinol 59, 375–381.PubMedCrossRefGoogle Scholar
  14. Hackenthal, E., Paul, M., Ganten, D., & Taugner, R. (1990). Morphology, physiology and molecular biology of renin secretion. Physiological Reviews 70. 1067–1116.PubMedGoogle Scholar
  15. Harding, K.E. & Balment, R.J. (1995). Effects of AVT on cAMP accumulation in renal tubules of teleost fish. J. Endocrinol. 147, Suppl. P60.Google Scholar
  16. Henderson, I.W., Brown, J.A & Balment, R.J. (1993). The renin-angiotensin system and volume homeostasis. In: New Insights into Vertebrate Kidney Function (Eds. A. Brown, R.J. Balment & J.C. Rankin). pp 31–349, Cambridge University Press, Cambridge.Google Scholar
  17. Henderson, I.W. & Wales, N.A.M. (1974). Renal diuresis and antidiuresis after injections of arginine vasotocin in the freshwater eel (Anguilla anguilla L). J. Endocrinol. 61, 487–500.PubMedCrossRefGoogle Scholar
  18. Kaiya, H. & Takei, Y. (1996). Plasma levels of atrial and ventricular natriuretic peptide in freshwater- and seawater-adapted eels. Gen. Comp. Endocrinol. (In Press).Google Scholar
  19. Lee, J. & Malvin, R.L. (1987). Natriuretic response to homologous heart extract in aglomerular toadfish. Am. J. Physiol. 252, R1055–R1058.PubMedGoogle Scholar
  20. Lipke, D.W. & Olson, K.R. (1988). Distribution of angiotensin-converting enzyme like activity in vertebrate tissues. Physiol. Zool. 61, 420–428.Google Scholar
  21. Lorenz, J.N., Wehprecht, H., He., X.R., Scott, O., Briggs, J.P. & Schnermann, J. (1993). Effects of adenosine and angiotensin on macula densa-stimulated renin secretion. Am. J. Physiol. 265, F187–194.Google Scholar
  22. Maetz, J., Bourget, J., Lahlou, B. & Hourdry, J. (1964). Peptides neurohypophysaires et osmoregulation chez Carassius auratus. Gen. Comp. Endocrinol. 4, 508–522.CrossRefGoogle Scholar
  23. Mahlmann, S., Meyerhof, W., Hausmann, H., Heierhorst, J., Schronrock, C., Zwiers, H., Lederis, K. & Richter, D. (1994). Structure, function and phylogeny of [Arg8]vasotocin receptors from teleost fish and toad. Proc. Natl. Acad. Sei. USA 91,1342–1345.CrossRefGoogle Scholar
  24. Nishimura, H. & Sawyer, W.H. (1976). Vasopressor, diuretic and natriuretic responses to angiotensin by the American eel, Anguilla anguilla rostrata. Gen. Comp. Endocrinol. 29, 337–348.PubMedCrossRefGoogle Scholar
  25. Pang, P.K.T. (1983). Evolution of control of epithelial transport in vertebrates. J. Exp. Biol. 106, 283–299.PubMedGoogle Scholar
  26. Perrott, M.N., Sainsbury, R.J. & Balment, R.J. (1993). Peptide hormone- stimulated second messenger production in the teleostean nephron. Gen. Comp. Endocrinol. 89, 387–395.PubMedCrossRefGoogle Scholar
  27. Rankin, J.C., Henderson, I.W. & Brown, J.A. (1983). Osmoregulation and the control of kidney function. In: ‘Control Processes in Fish Physiology’ (Eds J.C. Rankin, T.J. Pitcher & R. Duggan) pp 66–88. Croom Helm, London.Google Scholar
  28. Robertson, G.L., Shelton, R.L. & Athar, S. (1976). The osmoregulation of vasopressin. Kidney Internat. 10, 25–37.CrossRefGoogle Scholar
  29. Takei, Y (1994). Structure and function of natriuretic peptides in vertebrates. Perspectives in Comparative Endocrinology, National Research Council of Canada, pp 149–154.Google Scholar
  30. Takei, Y. & Balment, R.J. (1993). Biochemistry and physiology of a family of eel natriuretic peptides. Fish Physiol. Biochem. 11, 183–188.CrossRefGoogle Scholar
  31. Tseng, C.J., Chou, L.L., Ger, L.P. & Tung, C.S. (1994). Cardiovascular effects of angiotensin III in brain-stem nuclei of normotensive and hypertensive rats. J Pharmacol & Exp. Therapeut. 268, 558–564.Google Scholar
  32. Warne, J.M. & Balment, R.J. (1995). Effect of acute manipulation of blood volume and osmolality on plasma [AVT] in seawater flounder. Am. J. Physiol. 269, R1107–R1112.PubMedGoogle Scholar
  33. Warne, J.M. & Balment, R.J. (1996). Vascular actions of neurohypophysial peptides in the flounder. Fish Physiol. Biochem. (In Press).Google Scholar
  34. Warne, J.M., Hazon, N., Rankin, J.C. & Balment, R.J. (1994). A radioimmunoassay for the determination of arginine vasotocin (AVT): plasma and pituitary concentrations in fresh- and seawater fish. Gen. Comp. Endocrinol. 96, 438–444.PubMedCrossRefGoogle Scholar
  35. Wright, J.W., Krebs, L.T. Stobb, J.W. & Harding, J.W. (1995). The angiotensin IV system- functional implications. Front, in Neuroendocrinol. 16, 23–52.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • J. A. Brown
    • 1
  • R. J. Balment
    • 2
  1. 1.Department of Biological SciencesUniversity of ExeterExeterUK
  2. 2.School of Biological SciencesUniversity of ManchesterManchesterUK

Personalised recommendations