Skip to main content

Some of My Favorite Problems and Results

  • Chapter

Part of the Algorithms and Combinatorics book series (AC,volume 13)

Abstract

Problems have always been essential part of my mathematical life. A well chosen problem can isolate an essential difficulty in a particular area, serving as a benchmark against which progress in this area can be measured. An innocent looking problem often gives no hint as to its true nature. It might be like a “marshmallow,” serving as a tasty tidbit supplying a few moments of fleeting enjoyment. Or It might be like an “acorn,” requiring deep and subtle new insights from which a mighty oak can develop.

Keywords

  • Chromatic Number
  • Arithmetic Progression
  • Infinite Sequence
  • Tauberian Theorem
  • Favorite Problem

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-60408-9_3
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-60408-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • B. Bollobás, Extremal Graphy Theory, Academic Press, London, 1978.

    Google Scholar 

  • S. L. G. Choi, Covering the set of integers by congruence classes of distinct moduli, Mathematics of Computation 25 (1971), 885–895.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • R. Crocker, On the sum of a prime and two powers of two, Pacific J. Math. 36 (1971), 103–107.

    MathSciNet  MATH  Google Scholar 

  • H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.

    CrossRef  MATH  Google Scholar 

  • P. D. T. A. Elliot, Probabilistic Number Theory I, Mean-Value Theorems, Springer-Verlag, New York, 1979.

    Google Scholar 

  • P. D. T. A. Elliot, Probabilistic Number Theory II. Central Limit Theorems, Springer-Verlag, New York, 1980.

    Google Scholar 

  • P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.

    CrossRef  MathSciNet  Google Scholar 

  • P. Erdős, On integers of the form 2k + p and some related problems, Summa Brasiliensis Math. II (1950), 113–123.

    Google Scholar 

  • P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85–90.

    CrossRef  MathSciNet  Google Scholar 

  • P. Erdős and R. Rado, Intersection theorems for systems of sets II, J. London Math. Soc. 44 (1969), 467–479.

    CrossRef  MathSciNet  Google Scholar 

  • P. Erdős, The Art of Counting, J. Spencer, ed., MIT Press, Cambridge, MA, 1973.

    Google Scholar 

  • P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monograph 28, l’Enseignement Math., 1980.

    Google Scholar 

  • P. Erdos and G. Purdy, Combinatorial geometry, in Handbook of Combinatorics, R. L. Graham, M. Grötschel and L. Lovász, eds., North Holland, Amsterdam, 1994.

    Google Scholar 

  • P. X. Gallagher, Primes and powers of 2, Invent. Math. 29 (1975), 125–142.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • R. L. Graham, B. Rothschild and J. Spencer, Ramsey Theory, 2nd ed., Wiley, New York, 1990.

    MATH  Google Scholar 

  • R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 1981.

    MATH  Google Scholar 

  • H. Halberstam and K. F. Roth, Sequences, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  • R. R. Hall and G. Tenenbaum, Divisors, Cambridge University Press, Cambridge, 1988.

    CrossRef  MATH  Google Scholar 

  • J. Nešetřil and V. Rodi Mathematics of Ramsey Theory, Alg. and Comb. 5, Springer, New York, 1990.

    Google Scholar 

  • N. P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Annale 109 (1934), 668–678.

    CrossRef  MathSciNet  Google Scholar 

  • M. Simonovits, Extremal Graph Theory in Selected Topics in Graph Theory, L. Beineke and R. J. Wilson, eds., vol. 2, Academic Press, New York, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Erdős, P. (1997). Some of My Favorite Problems and Results. In: Graham, R.L., Nešetřil, J. (eds) The Mathematics of Paul Erdös I. Algorithms and Combinatorics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60408-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60408-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64394-1

  • Online ISBN: 978-3-642-60408-9

  • eBook Packages: Springer Book Archive