Abstract
Problems have always been essential part of my mathematical life. A well chosen problem can isolate an essential difficulty in a particular area, serving as a benchmark against which progress in this area can be measured. An innocent looking problem often gives no hint as to its true nature. It might be like a “marshmallow,” serving as a tasty tidbit supplying a few moments of fleeting enjoyment. Or It might be like an “acorn,” requiring deep and subtle new insights from which a mighty oak can develop.
Keywords
- Chromatic Number
- Arithmetic Progression
- Infinite Sequence
- Tauberian Theorem
- Favorite Problem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
B. Bollobás, Extremal Graphy Theory, Academic Press, London, 1978.
S. L. G. Choi, Covering the set of integers by congruence classes of distinct moduli, Mathematics of Computation 25 (1971), 885–895.
R. Crocker, On the sum of a prime and two powers of two, Pacific J. Math. 36 (1971), 103–107.
H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.
P. D. T. A. Elliot, Probabilistic Number Theory I, Mean-Value Theorems, Springer-Verlag, New York, 1979.
P. D. T. A. Elliot, Probabilistic Number Theory II. Central Limit Theorems, Springer-Verlag, New York, 1980.
P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.
P. Erdős, On integers of the form 2k + p and some related problems, Summa Brasiliensis Math. II (1950), 113–123.
P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85–90.
P. Erdős and R. Rado, Intersection theorems for systems of sets II, J. London Math. Soc. 44 (1969), 467–479.
P. Erdős, The Art of Counting, J. Spencer, ed., MIT Press, Cambridge, MA, 1973.
P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monograph 28, l’Enseignement Math., 1980.
P. Erdos and G. Purdy, Combinatorial geometry, in Handbook of Combinatorics, R. L. Graham, M. Grötschel and L. Lovász, eds., North Holland, Amsterdam, 1994.
P. X. Gallagher, Primes and powers of 2, Invent. Math. 29 (1975), 125–142.
R. L. Graham, B. Rothschild and J. Spencer, Ramsey Theory, 2nd ed., Wiley, New York, 1990.
R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 1981.
H. Halberstam and K. F. Roth, Sequences, Springer-Verlag, New York, 1983.
R. R. Hall and G. Tenenbaum, Divisors, Cambridge University Press, Cambridge, 1988.
J. Nešetřil and V. Rodi Mathematics of Ramsey Theory, Alg. and Comb. 5, Springer, New York, 1990.
N. P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Annale 109 (1934), 668–678.
M. Simonovits, Extremal Graph Theory in Selected Topics in Graph Theory, L. Beineke and R. J. Wilson, eds., vol. 2, Academic Press, New York, 1983.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Erdős, P. (1997). Some of My Favorite Problems and Results. In: Graham, R.L., Nešetřil, J. (eds) The Mathematics of Paul Erdös I. Algorithms and Combinatorics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60408-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-60408-9_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-64394-1
Online ISBN: 978-3-642-60408-9
eBook Packages: Springer Book Archive