Detection of Minimal Residual Disease on Bone Marrow Smears by Reverse Transcriptase Polymerase Chain Reaction

  • R. Schoch
  • P. Schafhausen
  • S. Jenisch
  • T. Haferlach
  • W. Müller-Ruchholtz
  • W. Gassmann
  • H. Löffler
Conference paper
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 38)


The polymerase chain reaction (PCR) is now often used for the identification of the three most common chromosomal aberrations, t(8; 21), t(15; 17) and inv(16), in adult AML, which account for 30%-40% of chromosomal aberrations in de novo AML. In addition, the high sensitivity of this technique has provided a way to detect residual leukaemia at previously unobtainable levels. For primary diagnosis one bone marrow aspirate smear is sufficient for the reverse transcriptase (RT) PCR assay. This source has the advantage that no special handling and transport of the specimen is necessary. The aim of the present study was to detect minimal residual disease on bone marrow smears and to compare the results with the detection of the fusion transcript in bone marrow aspirates. In 21 patients with AML or ALL in complete clinical and haematological remission (7 Patients with t(15; 17), 4 Patients with t(8; 21), 7 Patients with inv(16) and 3 Patients with t(9; 22)) bone marrow smears as well as 3 ml bone marrow aspirate were investigated. The normal gene could be detected from the glass slide smear and the bone marrow aspirate in every case. The specific translocation as a marker for minimal residual disease was observed in 10 of the 21 cases from the bone marrow smear. In the control with the bone marrow aspirate the specific translocation was detectable in only 7 of these 10 cases. These results demonstrate that bone marrow smears are a suitable source for RT-PCR-based detection of minimal residual disease. Further studies should evaluate this possibility.


Acute Myeloid Leukemia Minimal Residual Disease Bone Marrow Aspirate Fusion Transcript Bone Marrow Smear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nucifora G, Birn DJ, Erickson P, Gao J, LeBeau MM, Drabkin HA, Rowley JD (1993) Detection of DNA rearrangements in the AML1 and ETO loci and of an AML1/ETO fusion mRNA in patients with t(8; 21) acute myeloid leukemia. Blood 81: 883–888PubMedGoogle Scholar
  2. 2.
    Nisson PE, Watkins PC, Sacchi N (1992) Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8; 21) leukemic cells. Cancer Genet Cytogenet 63: 81–88PubMedCrossRefGoogle Scholar
  3. 3.
    Nucifora G, Larson RA, Rowley JD (1993) Persistence of the 8; 21 translocation in patients with acute myeloid leukemia type M2 in long-term remission, Blood 82: 712–715PubMedGoogle Scholar
  4. 4.
    Downing JR, Head DR, Curcio-Brint AM, Hulshof MG, Motroni TA, Raimondi SC, Caroll AJ, Drabkin HA, Willman C, Theli KS, Civin CI, Erickson P (1993) An AML1/ET0 fusion transcript is consistently detected by RNA-based polymerase chain reaction in acute myelogenous leukemia containing the t(8; 21)(q22; q22) translocation. Blood 81: 2860–2865PubMedGoogle Scholar
  5. 5.
    Nucifora G, Dickstein JI, Torbenson V, Roulston D, Rowley JD (1994) Correlation between cell morphology and expression of the AML1/ETO chimeric transcript in patients with acute myeloid leukemia without the t(8;21). Leukemia 8: 1533–1538PubMedGoogle Scholar
  6. 6.
    Kwong YL, Chan V, Wong KF, Chan TK (1995) Use of the polymerase chain reaction in the detection of AML1/ETO fusion transcript in t(8; 21). Cancer 75: 821–825PubMedCrossRefGoogle Scholar
  7. 7.
    Chang KS, Fan YH, Stass SA, Estey EH, Wang G, Trujillo JM, Erickson P, Drabkin HA (1993) Expression of AML-ETO fusion transcripts and detection of minimal residual disease in t(8; 21)-positive acute myeloid leukemia. Oncogene 8: 983–988PubMedGoogle Scholar
  8. 8.
    Kusec R, Laczika K, Knöbl P, Friedl J, Greinix H, Kahls P, Linkesch W, Schwarzinger I, Mitterbauer G, Purtscher B, Haas OA, Lechner K, Jaeger U (1994) AML1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8; 21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation. Leukemia 8: 735–739PubMedGoogle Scholar
  9. 9.
    Biondi A, Rambaldi A, Pandolfi PP, Rossi V, Giudici G, Alcalay M, Lo Coco F, Diverio D, Pogliani EM, Lanzi EM, Mandelli F, Masera G, Barbui T, Pelicci PG (1992) Molecular monitoring of the myl/retinoic acid receptor-a fusion gene in acute promyelocytic by polymerase chain reaction. Blood 80: 492–497PubMedGoogle Scholar
  10. 10.
    Campana D, Pui CH (1995) Detection of minimal residual disease in acute leukemia: Methodologic advances and clinical significance. Blood 85: 1416–1434PubMedGoogle Scholar
  11. 11.
    Claxton DF, Liu P, Hsu HB, Mariton P, Hester J, Collins F, Deisseroth AB, Rowley JD, Siciliano MJ (1994) Detection of fusion transcripts generated by the inversion 16 chromosome in acute myelogenous leukemia. Blood 83: 1750–1756PubMedGoogle Scholar
  12. 12.
    Poirel H, Radford-Weiss I, Rack K, Troussard X, Veil A, Valensi F, Picard F, Guesnu M, Leboeuf D, Melle J, Dreyfus F, Flandrin G, Macintyre E (1995) Detection of the chromosome 16 CBFb-MYHll fusion transcript in myelomonocytic leukemias. Blood 85: 1313–1322PubMedGoogle Scholar
  13. 13.
    Maurer J, Janssen JWG, Thiel E, Van Denderen J, Ludwig WD, Aydemir Ü, Heinze B, Fonatsch C, Harbott J, Reiter A, Riehm H, Hoelzer D, Bartram CR (1991) Detection of BCR/ABL genes in acute lymphoblastic leukemia by polymerase chain reaction. Lancer 337:1055–1058CrossRefGoogle Scholar
  14. 14.
    Kawasaki ES, Clark SS, Coyne MY, Smith SD, Champlin R, Witte ON, McCormick FP (1988) Diagnosis of chronic myeloid and acute lymphatic leukemias by detection of leukemias specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA 58: 5698CrossRefGoogle Scholar
  15. 15.
    Radich JP, Kopecky KJ, Boldt DH, Head D, Slovak ML, Babu R, Kirk J, Lee A, Kessler P, Appelbaum F (1994) Detection of BCR/ABL fusion genes in adult acute lymphoblastic leukemia by the polymerase chain reaction. Leukemia 8:1688–1195PubMedGoogle Scholar
  16. 16.
    de Melo MB, Sales TSI, Lorand-Metze I, Costa FF (1992) Rapid method for isolation of DNA from glass slide smears for PCR. Acta Haematol 87: 214–215PubMedCrossRefGoogle Scholar
  17. 17.
    Hanson CA, Holbrook EA, Sheldon S, Schnitzer B, Roth MS (1990) Detection of Philadelphia chromosome-positive cells from glass slide smears using the polymerase chain reaction. Am J Pathol 137: 1–6PubMedGoogle Scholar
  18. 18.
    Schoch R, Jenisch S, Haferlach T, et al: (1994) Detection of Philadelphia chromosome on stained smears of peripheral blood by reverse transcripptase polymerase chain reaction (RT-PCR). Onkologie 17 (Suppl 2): 133 (Abstract)Google Scholar
  19. 19.
    Yamashita S, Umemura T, Sadamura S, Yufu Y, Nishimura J, Natawa H (1994) Detection of bcr/abl in mRNA in in stained bone marrow smears. Leukemia 8: 1409–1410PubMedGoogle Scholar
  20. 20.
    Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  21. 21.
    Kozu T, Miyoshi H, Shimizu K, Maseki N, Kanekok Y, Asou H, Kanada N, Ohki M (1993) Junctions of the AMLI/MTG8(ETO) fusion are constant in t(8; 21) acute myeloid leukemia detected by reverse transcriptase polymerase chain reaction. Blood 82: 1270–1276PubMedGoogle Scholar
  22. 22.
    Kwok S, Higuchi R (1989) Avoiding false positives with PCR. Nature 339: 2377–238CrossRefGoogle Scholar
  23. 23.
    Miller WH, Jr, Levine K, DeBlasio A, Frankel SR, Dmitrovsky E, Warrell RP, Jr (1993) Detection of minimal residual disease in acute promyelocytic leukemia by a reverse transcriptase chain reaction assay for the PML/RAR-a fusion mRNA. Blood 82: 1689–1694PubMedGoogle Scholar
  24. 24.
    Yamamoto K, Seto M, Iida D, Komatsu H, Kojima S, Kodera Y, Nakazawa S, Sito H, Takahashi T, Ueda R (1994) A reverse transcriptase polymerase chain reaction detects heterogenous chimeric mRNA in leukemias with 11q23 abnormalities. Blood 83: 2912PubMedGoogle Scholar
  25. 25.
    Soekarman D, von Lindern M, Daenen S, de Jong B, Fpnatsch C, Heinze B, Bartram C, Hagemeijer A, Grosveld G (1992) The translocation (6;9) (p23; q34) shows consistent rearrangements of two genes and defines a myeloproliferative disorder with specific clinical features. Blood 79: 2990–2997PubMedGoogle Scholar
  26. 26.
    Lin F, Goldman JM, Cross NCP (1994) A comparison of the sensitivity of blood and bone marrow for the detection of minimal residual disease in chronic myeloid leukemia. Br J Haematol 86: 683–68PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • R. Schoch
    • 1
  • P. Schafhausen
    • 1
  • S. Jenisch
    • 2
  • T. Haferlach
    • 1
  • W. Müller-Ruchholtz
    • 2
  • W. Gassmann
    • 1
  • H. Löffler
    • 1
  1. 1.Department of Internal Medicine IIChristian Albrecht University of KielKielGermany
  2. 2.Department of ImmunologyChristian Albrecht University of KielKielGermany

Personalised recommendations