Skip to main content

Linear Modeling and Invariances

  • Chapter
  • 169 Accesses

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 68))

Abstract

Let us consider a natural phenomenon that can be characterized by a two- dimensional variable Z = (X, Y) and let us assume that the empirical sample points (Z 1 , Z 2 ,…, Z N ) lie close to the line described by a linear relation Ŷ = AX. In order to estimate the variable Y from a given value of X we can apply the conditional average estimator defined in the previous chapter or we can directly start with the linear relation and by minimizing the mean square error determine the coefficient A. The resulting expression A = cov(XY)/var(X), is well-known from the literature on linear statistical estimation. It can then be utilized to estimate Y from given X by the linear regression equation Ŷ = X cov(XY)/var(X).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. E. Albert, L. A. Gardner: Stochastic Approximation and Nonlinear Regression ( MIT Press, Cambridge, MA 1967 )

    MATH  Google Scholar 

  2. S. T. Alexander: Adaptive Signal Processing ( Springer, New York 1986 )

    MATH  Google Scholar 

  3. J. A. Anderson, E. Rosenfeld: Neurocomputing, Foundations of Research, (The MIT Press, Cambridge, MA 1988 ), Vol. 1, 2

    Google Scholar 

  4. J. A. Anderson, A. Pellionisz, E. Rosenfeld: Neurocomputing 2, Directions for Research ( The MIT Press, Cambridge, MA 1990 )

    Google Scholar 

  5. M. Bertero: “Linear Inverse and Ill-Posed Problems”, Report of Instituto Nazionale Di Fisica Nucleare, Frascati, Italy, INFN/TC-88/2

    Google Scholar 

  6. I. Grabec: “Application of Deconvolution in Description of Operation of Linear Systems”, Mechanical Engineering Journal, 27, 1–7 (1981)

    Google Scholar 

  7. I. Grabec: “Description of Operation of Noisy Linear Systems”, Mechanical Engineering Journal, 29, E 1–5 (1983)

    Google Scholar 

  8. I. Grabec: “Optimal Filtering of Transient AE Signals”, Proc. Ultrasonics International’85, London 1985, ( Butterworth, Guildford, UK 1985 ), pp. 219–224

    Google Scholar 

  9. I. Grabec: “Chaos Generated by the Cutting Process”, Physics Letters, 117, 384–386 (1986)

    Article  MathSciNet  Google Scholar 

  10. I. Grabec, E. Elsayed: “Analysis of AE During Martensitic Transformation in the CuZnAl Alloy by the Measurement of Forces”, Physics Letters, 113, 376–378 (1986)

    Article  Google Scholar 

  11. I. Grabec, E. Elsayed: “Quantitative Analysis of AE During Martensitic Transformation in the CuZn Alloy”, J. Phys., D — Appl. Phys., 19, 605–614 (1986)

    Article  ADS  Google Scholar 

  12. I. Grabec, W. Sachse: “Application of an Intelligent Signal Processing System to Acoustic Emission Analysis”, J. Acoust. Soc. Am., 85, 1226–1235 (1989)

    Article  ADS  Google Scholar 

  13. I. Grabec, W. Sachse: “Experimental Characterization of Ultrasonic Phenomena by a Learning System”, J. Appl. Phys., 66, 3993–4000 (1989)

    Article  ADS  Google Scholar 

  14. I. Grabec, K. Zgonc, W. Sachse: “Application of a Neural Network to Analysis of Ultrasonic Signals”, Proc. Ultrasonics International’89, Madrid 1989 ( Butterworth, Guildford, UK 1989 ), pp. 796–802

    Google Scholar 

  15. H. Haken: Synergetic Computers and Cognition, A Top-Down Approach to Neural Nets, Springer Series in Synergetics, Vol. 50 ( Springer, Berlin 1991 )

    Google Scholar 

  16. S. Haykin: Adaptive Filter Theory ( Prentice-Hall, London 1991 )

    MATH  Google Scholar 

  17. R. Hecht-Nielsen: Neurocomputing ( Addison-Wesley, Reading, MA, 1990 )

    Google Scholar 

  18. D. O. Hebb: The Organization of Behavior, A Neurophysiological Theory ( Wiley, New York, 1948 )

    Google Scholar 

  19. T. Kohonen: Self-Organization and Associative Memory ( Springer, Berlin 1989 )

    Google Scholar 

  20. Y. W. Lee: Statistical Theory of Communication (J. Wiley & Sons, New York 1960 )

    Google Scholar 

  21. G. I. Marchuk: Methods of Numerical Mathematics ( Springer, Berlin 1975 )

    MATH  Google Scholar 

  22. J. E. Michaels, T. E. Michaels, W. Sachse: “Application of Deconvolution to Acoustic Emission Signal Analysis”, Materials Evaluation, 39, 1032–1036 (1981)

    Google Scholar 

  23. S. J. Orfandis: Optimum Signal Processing: An Introduction ( Macmillan, New York 1988 )

    Google Scholar 

  24. Y. H. Pao: Elastic Waves and Nodestructive Testing of Materials (American Society of Mechanical Engineers, New York 1987 ), Vol. 29, pp. 107–128

    Google Scholar 

  25. H. Robbins, S. Monro: “A Stochastic Approximation Method”, Annals of Mathematical Statistics, 22, 400–407 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. E. Rumelhart, J. McClelland, and The PDP Research Group: Parallel Distributed Processing ( MIT Press, Cambridge, MA 1986 )

    Google Scholar 

  27. W. Sachse, S. Golan: in Elastic Waves and Non-Destructive Testing of Materials, ed. by Y. H. Pao ( AMD, ASME, New York 1978 ), Vol. 29, pp. 11–31

    Google Scholar 

  28. W. Sachse, N. N. Hsu: “Ultrasonic Transducers for Materials Testing and Their Characterization”, in Physical Acoustics, ed. by W. P. Mason and R. N. Thurston (Academic, New York 1979 ), Vol. 14, pp. 177–405

    Google Scholar 

  29. W. Sachse: “Application of Quantitative AE Methods”, in Solid Mechanics for Quantitative NDE, ed. by J. D. Achenbach, Y. Rajapakse ( Martinus Nijhoff, Dordrecht 1987 ), pp. 41–64

    Google Scholar 

  30. A. Tarantola: Inverse Problem Theory; Methods for Data Fitting and Model Parameter Estimation ( Elsevier, Amsterdam 1987 )

    MATH  Google Scholar 

  31. B. Widrow, M. E. Hoff: Adaptive Switching Circuits, 1960 IRE WESCON Convention Record, 96–1054, New York, 1960

    Google Scholar 

  32. K. Zgonc: PhD Dissertation ( Faculty of Mechanical Engineering, University of Ljubljana 1992 )

    Google Scholar 

  33. K. Zgonc, I. Grabec: “A Multidimensional Optimal Deconvolution Applied to Hetero-associative Recall of Acoustic Emission Signals”, Proc. ECPD Neurocomputing, Dubrovnik, 1990, Vol. 1, No. 1, pp. 206–212

    Google Scholar 

  34. K. Zgonc, I. Grabec: “Multidimensional Deconvolution Applied to Acoustic Emission Analysis”, 1st Symp. Eval. Adv. Mat. by AE, Tokyo ( JSNDI, Tokyo 1990 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grabec, I., Sachse, W. (1997). Linear Modeling and Invariances. In: Synergetics of Measurement, Prediction and Control. Springer Series in Synergetics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60336-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60336-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64359-0

  • Online ISBN: 978-3-642-60336-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics