Matrix and Carrier Materials for Bone Growth Factors: State of the Art and Future Perspectives

  • D. Hutmacher
  • A. Kirsch
  • K. L. Ackermann
  • M. B. Hürzeler


In reviewing the scientific literature of hard-tissue repair/generation, it can be concluded that it is worthwhile to evaluate the possibility of obtaining synergistic effects by combining bioresorbable scaffolds with other factors stimulatory to osteogenesis. Theoretically, this can occur at different principal levels. Cytokines, including growth factors such as BMP, the IGFs, TGF-b, PDGF, may be stimulatory to the differentiation of cells of the osteoblastic lineage, thus having the potential to promote an increased recruitment of osteogenic cells. The IGFs, TGF-b, and PDGF are known to stimulate the synthetic capacity of mature osteoblasts. In addition, the FGFs are angiogenic and may thus improve nutrition for a healing bone defect by an early establishment of the vascular bed. At present, the field of growth-stimulatory factors is strongly expanding. Even though the effects on bone of such factors are far from being completely elucidated, it may be expected that some of them will be of clinical relevance in the future. Future developments of de novo biodegradable and bioresorbable carrier and matrix materials treated with growth factors should have the objectives: biointeractive and biomi-metic devices/implants endowed with cell or cell-based signals; a synthetic extracellular matrix for enhanced cell interaction, cell polarization, or remodeling; and a temporal and/or spatial delivery of bioactive agents over short and long time-periods.


Bone Morphogenetic Protein Carrier Material Absorbable Collagen Sponge Bioresorbable Scaffold Bone Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reddi AH, Wientrob S, Muthukumaran N (1987) Biological principles of bone induction. Orthopedic Clinics of North America 18:207–212.PubMedGoogle Scholar
  2. 2.
    Wang EA Rosen V, D’Allessandro JS (1990) Recombinant human bone morphogenetic protein induces bone formation. Proceedings of the National Academy of Sciences, USA 87:2220–2224.CrossRefGoogle Scholar
  3. 3.
    Wozney JM (1994) Molecular biology of the bone morphogenetic proteins. In: Urist MR, O’Connor BT, Burwell RG (eds) Bone grafts, derivates and substitutes. Butter-worth Heinemann, London, pp 397–413.Google Scholar
  4. 4.
    Wozney JM (1997) Bone morphogenetic proteins: potential for use in oral/maxillofacial and periodontal reconstructive surgery. 7th International Congress on Reconstructive Preprosthetic Surgery, Kopenhagen.Google Scholar
  5. 5.
    Miyamoto S, Takoaka K, Okada T (1992) Evaluation of polylactic acid homopolymers as carriers for bone morphogenetic protein. Clin Orthop 278:274–285.PubMedGoogle Scholar
  6. 6.
    Miyamoto S, Takoaka K, Okada T (1993) Polylactic acid-polyethylene glycol block copolymer: a new biodegradable carrier for bone morphogenetic proteins. Clin Orthop 294:333–343.PubMedGoogle Scholar
  7. 7.
    Kenley RA, Yim K, Abrams J, Ron E, Turek T, Marden LJ, Hollinger JO (1993) Biotechnology and bone graft substitutes. Pharmaceutical Research 10:1393–1401.PubMedCrossRefGoogle Scholar
  8. 8.
    Hollinger JO, Chaudhari A (1992) Bone regeneration materials for the mandibular and craniofacial complex. Cells and Materials 2:143–151.Google Scholar
  9. 9.
    Hutmacher D, Hürzeler M, Schliephake H (1996) A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants 11:667–678.PubMedGoogle Scholar
  10. 10.
    Fergusson D, Devis WL, Urist MR, William C, Pat Allen HE (1987) Bovine bone morphogenetic protein (bBMP) fraction-induced repair of craniotomy of rhesus monkey. Clin Orthop 219:251–258.Google Scholar
  11. 11.
    Hollinger JO, Schmitz JP, Mark DE, Seyfer AE (1990) Osseous wound healing with xe-nogenic bone implants with a biodegradable carrier. Surgery 107:50–54.PubMedGoogle Scholar
  12. 12.
    Meikel MC, Papaioannou S, Ratledge TJ (1994) Effect of poly dl-Lactide-co-glycolide implants and xenogenic bone matrix derived growth factors on calvarial bone repair in the rabbit. Biomaterials 15:513–521.CrossRefGoogle Scholar
  13. 13.
    Miki T, Harada K, Imai Y, Enomoto S (1994) Effect of freeze dried poly-l-lactide discs mixed with bone morphogenetic protein on the healing of rat skull defects. J Oral Max-illofac Surg 52:387–391.CrossRefGoogle Scholar
  14. 14.
    Miki T, Imai Y (1996) Ostoinductive potential of freeze-dried, biodegradable, poly (glycolic acid-co-lactic acid) disks incorporated with bone morphogenetic protein in skull defcts of rats. Int J Oral Maxillfac Surg 25:402–406.CrossRefGoogle Scholar
  15. 15.
    Puelacher WC, Vacanti JP, Ferraro NF, Schloo, Vacanti CA (1996) Femoral shaft reconstruction using tissue engineered growth of bone. Int J Oral Maxillofac Surg 25:223–228.PubMedCrossRefGoogle Scholar
  16. 16.
    Schliephake H, Neukam WF, Hutmacher D, Becker J (1996) The use of a basic fibroblast growth factor (bFGF) for enhancement of bone ingrowth into pyrolized bovine bone. Int J Oral Maxillofac Surg.Google Scholar
  17. 17.
    Ripamonti U, Ma S, van den Heever B, Reddi AH (1992) Osteogenin, a bone morphogenetic protein, adsorbed on porous hydroxyapatite substrata, induces rapid bone differentiation in calvarial defects of adult primates. Plastic and Reconstructive Surgery 90:382–393.PubMedCrossRefGoogle Scholar
  18. 18.
    Ripamonti U, Ma S, Reddi AH (1992) The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 12:202–212.PubMedGoogle Scholar
  19. 19.
    Yamazaki Y, Oida S, Akimoto Y, Shioda S (1988) Response of the mouse femoral muscle to an implant of a composite of bone morphogenetic protein and plaster of Paris. Clin Orthop 234:240–249.PubMedGoogle Scholar
  20. 20.
    Gordon MK, Gerecke DR, Düblet B, Van der Rest M, Sugure SP, Olsen BR (1990) The structure of type XII collagen. Ann NY Acad Sci 580:8–16.PubMedCrossRefGoogle Scholar
  21. 21.
    Vuorio L M, deCombrugghe B (1990) The family of collagen genes. Ann Rev Biochem 59:837–872.PubMedCrossRefGoogle Scholar
  22. 22.
    Petrides PE (1988) Binde- und Stützgewebe. In: Löffler G, Petrides PE (eds) Physiologische Chemie. Springer, Berlin, pp 881–907.Google Scholar
  23. 23.
    Salthouse TM (1986) Cellular enzyme activity at the polymer-tissue interface: a review. J Biomed Mater Res 10:197.CrossRefGoogle Scholar
  24. 24.
    Huang C, Yannas IV (1977) Mechanical studies of enzymatic degradation of insoluble collagen fibres. J Biomed Mater Res 8:137.CrossRefGoogle Scholar
  25. 25.
    Bajpai PK (1983) Biodegradable scaffolds in orthopedic, oral and maxillofacial surgery. In: Rubin LR (eds) Biomaterials in reconstructive surgery. Mosby, St. Louis, P 156.Google Scholar
  26. 26.
    Chvapil M (1977) Collagen sponge: theory and practice of medical aplications. J Biomed Mater Res 11:721.PubMedCrossRefGoogle Scholar
  27. 27.
    Chvapil M, Kronenthal RL, van Winkler W Jr. (1973) Medical and surgical applications of collagen. In: Hall N, Jackson N (eds) International review of connective tissue research, vol 6. Academic Press, New York, pp 1–55.Google Scholar
  28. 28.
    Boyne PJ (1995) Reconstruction of discontinuity defects in rhesus monkeys using rHBMP-2. J Oral Maxillofac Surg 53:92.Google Scholar
  29. 29.
    Boyne PJ, Marx RE, Nevins M, Triplett G, Lázaro E, Lilly LC, Alder M, Nurnmikoski P (1997) Studie über die Anwendbarkeit eines rHBMP-2/resorbierbaren Kollagenschwamm (ACS) zur Sinusbodenaugmentation. Int J Paradontaol Rest Zahnheilkd 17:11–25.Google Scholar
  30. 30.
    Nevins M, Kirker-Head C, Nevins M, Wozney JA, Palmer R, Graham D (1996) Bone formation in the goat maxillary sinus induced by absorbable collagen sponge implants impregnated with recombinant human bone morphogenic protein-2. Int J Periodont Rest Dent 16:9–19.Google Scholar
  31. 31.
    Viljanen W, Gao TJ, Lindholm TS, Kommonen B (1996) Xenogenic moose (Alces alces) bone morphogentic protein (mBMP) induced repair of critical-size skull defects in sheep. Int J Oral Maxillofac Surg 25:217–222.PubMedCrossRefGoogle Scholar
  32. 32.
    Moore JC, Matukas VJ (1990) Craniofacial osseous restoration with osteoinductive proteins in a collagenous delivery system. Int J Oral Maxillofac Surg 19:172–176.PubMedCrossRefGoogle Scholar
  33. 33.
    Kawamura M, Urist MR (1988) Human fibrin is a physiologic delivery system for bone morphogenetic protein. Clin Orthop 235:302–310.PubMedGoogle Scholar
  34. 34.
    Takaoka K, Koezuka M, Nakahara H (1991) Teleopeptide-depleted bovine skin collagen as a carrier for bone morphogenetic protein. J Orthop Res 9:902–927.PubMedCrossRefGoogle Scholar
  35. 35.
    Terheyden H, Jepsen S, Vogeler S, Tucker M, Rueger DC (1996) Recombinant human osteogenic protein 1 (rh BMP 7) in the rat mandibular augmentation model using different carrier materials. 7th International Congress on Reconstructive Preprosthetic Surgery, Zürich.Google Scholar
  36. 36.
    Ackermann KL, Kirsch A, Schober C (1994) Phykogenes, bovines und korallines Hy-droxylapatit als Augmentationsmaterial des recessus alveolaris maxillae: eine vergleichende Studie. Zeitschrift für Stomatologie 91:219–224.Google Scholar
  37. 37.
    Hürzeler MB, Kirsch A, Ackermann KL, Hutmacher D (in press) Histomorphometric analysis of different porous hydroxyapatite materials for maxillary sinus floor augmentation in humans in preparation.Google Scholar
  38. 38.
    Feifel H, Gerner A, Schmidt KH, Wimmer K, Schmitz HJ (1995) Die Beeinflussung der Knochenregeneration in phykogener Hydroxylapatitkeramik durch einen osteoindukti-ven Proteinkomplex. Dtsch Mund Kiefer Gesichts Chir 19:2539. 27.Google Scholar
  39. 39.
    Peetz M (1991) Characterization of xenogeneic bone material. In: Boyne PJ (ed) Osseous reconstruction of the maxilla and the mandible. Quintessenz, Chicago, pp 87–100, 1997.Google Scholar
  40. 40.
    Paul C, Schlickewei W, Kuner EH, Schenk RK (1993) Bovines Apatit: Wertigkeit beim Knochenersatz. In: Pesch HJ, Stöss H, Kummer B (eds) Osteologie aktuell. Springer, Berlin, pp 288–291.CrossRefGoogle Scholar
  41. 41.
    Ono I, Ohura T, Murata M (1992) A study on bone induction in hydroxyapatite combined with bone morphogentic protein. Plast Reconstr Surg 90:870–879.PubMedCrossRefGoogle Scholar
  42. 42.
    Herr G, Wahl D, Küsswetter W (1993) Osteogenic activity of bone morphogerietic protein and hydroxyapatite composites implants. Annales Chirurgiae et Gynaeecologiae 82: 99–108.Google Scholar
  43. 43.
    Johnson EE, Urist MR. Finerman GA (1992) Resistant nonunions and partial or complete segmental defects of long bones: treatment with implants of a composite of BMP and autolyzed, antigen-extracted, allogenic (AAA) bone. Clin Orthp 277:229–237.Google Scholar
  44. 44.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926.PubMedCrossRefGoogle Scholar
  45. 45.
    Yamamoto M, Kato K, Ikada Y (1996) Effect of the structure of bone morphogenetic protein carriers on ectopic bone regeneration. Tissue Engineering 2/4:315–326.PubMedCrossRefGoogle Scholar
  46. 46.
    Michaeli W, Seibt S (1995) Molding of resorbable polymers at low temperatures, ANTEC 3397–3399.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • D. Hutmacher
  • A. Kirsch
  • K. L. Ackermann
  • M. B. Hürzeler

There are no affiliations available

Personalised recommendations