In vitro Engineered Cartilage for Reconstructive Surgery, Using Biocompatible, Resorbable Fibrin Glue/Polymer Structures

  • A. Haisch
  • T. Rathert
  • O. Schultz
  • V. Jahnke
  • G. R. Burmester
  • M. Sittinger
Conference paper


Tissue engineering, one of the most challenging fields in research, offers new revolutionary perspectives in solving problems concerning tissue replacement. Current practical approaches in cartilage engineering still face problems with three-dimensional cell distribution, or they require components for cell immobilization which raise biocompatibility problems. In this study, we shall present a model using cells crosslinked by fibrin within biocompatible resorbable polymers. Both components have been in clinical use for a long time. Immunohistochemical procedures have shown that this model provides optimal requirements for in vitro cartilage production. Cartilage-specific extracellular components like proteoglycan, chondroitin sulfate and collagen II have been immunochemically characterizized. Histomorphological methods showed a mechanically stable tissue compound for at least six weeks. We suggest that this model fulfillls all the biocompatible requirements for in vitro production of autologous, individually shaped cartilage transplants for reconstructive surgery.


Fibrin Glue Engineer Cartilage Plasma Protein Fraction Dedifferentiated Chondrocytes Cartilage Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Minuth WW, StÖckl G, Klpth S, Dermietzel R (1992) Construction of an Apparatus for Perfusion Cell Cultures Which Enables in Vitro Experements Under Organotypic Condi¬tions. EUR J CELL BIOL 57:132–137.PubMedGoogle Scholar
  2. 2.
    Cordell Jl, Falini B, Erber Wn (1984) Immunoenzymatic Labeling Of Monoklonal Anti¬Bodies Using Immune Complexes Of Alkaline Phosphatase And Monoklonal Anti-Alkaline Phosphatase (Apaap) Complexes. J Histochem Cytochem 32:219–229.PubMedCrossRefGoogle Scholar
  3. 3.
    Aydelotte Mb, Kuettner Ke (1988) Differences Between Sub-Populations Of Cultured Bo¬Vine Articular Chondrocytes: I. Morphology And Cartilage Matrix Production. Con Tiss Res 18:205–222.Google Scholar
  4. 4.
    Benya Pd, Shaffer Jd (1982) Dedifferentiated Chondrocytes Reexpress The Differentiated Collagen Phenotype. Cell 30:215–224.PubMedCrossRefGoogle Scholar
  5. 5.
    Bujia J, Sittinger M, Wilmes E, Hammer C (1994) Effect Of Growth Factors On Cell Prolif¬Eration By Septal Chondrocytes Cultured In Monolyer. Acta Otolaryngol (Stockh) 114:539–543.CrossRefGoogle Scholar
  6. 6.
    Bujia J, Rotter N, Minuth W, Hammer C, Sittinger M (1995) ZÜChtung Menschlichen Knorpelgewebes In Einer Dreidimensionalen Perfusionskulturkammer: Charakterisier¬Ung Der Kollagensynthese. Laryngo Rhino Otol 74:559–563.CrossRefGoogle Scholar
  7. 7.
    Sittinger M (1994) In Vitro Formation Of Vital Cartilage Transplants Using Resorbable Polymeres. Phd Dissertation, University Of Regensburg.Google Scholar
  8. 8.
    Sittinger M, Bujia J, Minuth WW, Hammer C, Burmester GR (1994) Engineering Of Car¬Tilage Tissue Using Bioresorbable Polymer Carriers In Perfusion Culture. Biomaterials 15:451–456.PubMedCrossRefGoogle Scholar
  9. 9.
    Sittinger M, Bujia J, Rotter N, Reitzel D, Minuth Ww, Burmester Gr (1996) Tissue En¬Gineering And Autologous Transplant Formation: Practical Approaches With Resorbable Biomaterials And New Cell Culture Techniques. Biomaterials 17:237–242.PubMedCrossRefGoogle Scholar
  10. 10.
    Sittinger M, Schultz O, Minuth WW, Keyßer G, Burmester GR (1997) Artificial Tissues in Percusion Culture. INT J ARTIF ORG 20:57–62.Google Scholar
  11. 11.
    Vacanti CA, Langer R, Schloo B, Vacanti JP (1991) Synthethic Biodegradable Polymers Seeded with Chondrocyte provide a Template for New Cartilage Formation in vivo. Plast Reconstr Surg 87:753Google Scholar
  12. 12.
    Vacanti Ca, Kim Ws, Mooney D, Schloo B, Vacanti Jp (1993) Tissue Engineered Com¬Posites Of Bone And Cartilage Using Synthetic Polymers Seeded With Two Cell Types. Orthop Trans 18:276.Google Scholar
  13. 13.
    Homminga GN, Buma P, Koot HWJ, Van Der Kraan PM, Van Der Berg WB (1993) Chondrocyte Behavior in Fibrin Glue in Vitro. Acta Orthop Scand 64:441–445.PubMedCrossRefGoogle Scholar
  14. 14.
    Kaeser A, Dum N (1993) Grundlagen der Fibrinklebung: Qualitätsanforderungen und Infektionssicherheit von Fibrinkleber. In: Haverich A, Huth C (eds) Fibrinklebung in der Herz-, Gefäß- und Thoraxchirurgie. Steinkopff, Darmstadt, 13–23.CrossRefGoogle Scholar
  15. 15.
    Kjaergard HK, Weis-Fogh US (1994) Important factors influencing the strength of auto¬logous fibrin glue: the fibrin concentration and reaction time comparison of strength with commercial fibrin glue. Eur Surg Res 26:273–276.PubMedCrossRefGoogle Scholar
  16. 16.
    Scheele J, Pesch HJ (1982) Morphologische Aspekte des Fibrinkleberabbaus im Tierex¬periment. In: Cotta H, Braun A (eds) Fibrinkleber in Orthopädie und Traumatologic G. Thieme, Stuttgart, 35–43.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • A. Haisch
  • T. Rathert
  • O. Schultz
  • V. Jahnke
  • G. R. Burmester
  • M. Sittinger

There are no affiliations available

Personalised recommendations