Advertisement

Principles of Passive Visualization

  • M. E. Ladd
Part of the Medical Radiology book series (MEDRAD)

Abstract

Prerequisite to the safe execution of an interventional procedure is the ability to accurately visualize any instruments in relation to the MR image. These interventions might involve a percutaneous route, such as a biopsy, or endovascular or endoluminal access. In contrast to X-ray, visualization of interventional instruments in MR has proven to be difficult. Excellent contrast between the instrument and surrounding tissue can be obtained in X-ray through the use of high-atomic number metals such as gold or tungsten. These materials provide large attenuation of incident X-rays, rendering the instrument visible with high resolution.

Keywords

Magnetic Susceptibility Static Magnetic Field Magn Reson Image Signal Void Receiver Bandwidth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakker CJG, Bhagwandien R, Moerland MA, Fuderer M (1993) Susceptibility artifacts in 2DFT spin-echo and gradient-echo imaging: the cylinder model revisited. Magn Reson Imaging 11:539–548PubMedCrossRefGoogle Scholar
  2. Bakker CJG, Bhagwandien R, Moerland MA, Ramos LMP (1994) Simulation of susceptibility artifacts in 2D and 3D Fourier transform spin-echo and gradient-echo magnetic resonance imaging. Magn Reson Imaging 12:767–774PubMedCrossRefGoogle Scholar
  3. Bakker CJG, Hoogeveen RM, Weber J, van Vaals JJ, Viergever MA, Mali WP (1996) Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn Reson Med 36:816–820PubMedCrossRefGoogle Scholar
  4. Callaghan PT (1991) Principles of nuclear magnetic resonance in microscopy. Oxford University Press, New YorkGoogle Scholar
  5. Dumoulin CL, Souza SP, Darrow RD (1993) Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29:411–415PubMedCrossRefGoogle Scholar
  6. Farahani K, Sinha U, Sinha S, Chiu LCL, Lufkin RB (1990) Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 14:409–413PubMedCrossRefGoogle Scholar
  7. Frahm C, Gehl HB, Melchert UH, Weiss HD (1996a) Visualization of magnetic resonance-compatible needles at 1.5 and 0.2 Tesla. Cardiovasc Intervent Radiol 19:335–340PubMedCrossRefGoogle Scholar
  8. Frahm C, Gehl HB, Weiss HD, Rossberg WA (1996b) Technik der MRT-gesteuerten Stanzbiopsie im Abdomen an einem offenen Niederfeldgerät: Durchführbarkeit und erste klinische Ergebnisse. Rofo Fortschr Geb Roentgenstr Neuen Bildgeb Verfahr 164:62–67CrossRefGoogle Scholar
  9. Glowinski A, Adam G, Bücker A, Neuerburg J, van Vaals JJ, Günther RW (1996) Catheter visualization for interventional MR by actively controlled locally induced field inhomogeneities. (abstract) Proceedings of Fourth Scientific Meeting and Exhibition of International Society for Magnetic Resonance in Medicine, New York, p 51Google Scholar
  10. Hohenschuh E, Watson AD (1997) Contrast media: theory and mechanisms of contrast-enhancing agents. In: Higgins CB, Hricak H, Helms CA (eds) Magnetic resonance imaging of the body, 3rd edn. Lippincott-Raven, Philadelphia, pp 1439–1464Google Scholar
  11. Köchli VD, McKinnon GC, Hofmann E, von Schulthess GK (1994) Vascular interventions guided by ultrafast MR imaging: evaluation of different materials. Magn Reson Med 31:309–314PubMedCrossRefGoogle Scholar
  12. Kugel H, Langen HJ, Krähe T, Heindel W, Lackner K (1996) Precision of MR-guided needle placement — experimental results. MAGMA 4(2)[Suppl]:143–144Google Scholar
  13. Ladd ME, Erhart P, Debatin JF, Romanowski BJ, Boesiger P, McKinnon GC (1996) Biopsy needle susceptibility artifacts. Magn Reson Med 36:646–651PubMedCrossRefGoogle Scholar
  14. Ladd ME, Erhart P, Debatin JF, Hofmann E, Boesiger P, von Schulthess GK, McKinnon GC (1997) Guidewire antennas for MR fluoroscopy. Magn Reson Med 37:891–897PubMedCrossRefGoogle Scholar
  15. Lenz G, Drobnitzky M, Dewey C (1996) MR-visible catheters for intra-vascular interventional MRI procedures. (abstract) Proceedings of Fourth Scientific Meeting and Exhibition of International Society of Magnetic Resonance in Medicine, New York, p 901Google Scholar
  16. Leung DA, Debatin JF, Wildermuth S, McKinnon GC, Holtz D, Dumoulin CL, Darrow RD, Hofmann E, von Schulthess GK (1995) Intravascular MR tracking catheters: preliminary experimental evaluation. AJR 164:1265–1270PubMedGoogle Scholar
  17. Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR 166:1337–1345PubMedGoogle Scholar
  18. Lüdeke KM, Röschmann P, Tischler R (1985) Susceptibility artefacts in NMR imaging. Magn Reson Imaging 3:329–343PubMedCrossRefGoogle Scholar
  19. Lufkin RB, Teresi L, Hanafee WN (1987) New needle for MR-guided aspiration cytology of the head and neck. AJR 149:380–382PubMedGoogle Scholar
  20. Marshall SV, Skitek GG (1987) Electromagnetic concepts and applications, 2nd edn. Prentice-Hall, New JerseyGoogle Scholar
  21. Mueller PR, Stark DD, Simeone JF, Saini S, Butch RJ, Edelman RR, Wittenberg J, Ferrucci JT (1986) MR-guided aspiration biopsy: needle design and clinical trials. Radiology 161:605–609PubMedGoogle Scholar
  22. Orel SG, Schnall MD, Newman RW, Powell CM, Torosian MH, Rosato EF (1994) MR imaging-guided localization and biopsy of breast lesions: initial experience. Radiology 193:97–102PubMedGoogle Scholar
  23. Rubin DL, Ratner AV, Young SW (1990) Magnetic susceptibility effects and their application in the development of new ferromagnetic catheters for magnetic resonance imaging. Invest Radiol 25:1325–1332PubMedCrossRefGoogle Scholar
  24. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850PubMedCrossRefGoogle Scholar
  25. Silverman SG, Collick BD, Figueira MR, Khorasani R, Adams DF, Newman RW, Topulos GP, Jolesz FA (1995) Interactive MR-guided biopsy in an open-configuration MR imaging system. Radiology 197:175–181PubMedGoogle Scholar
  26. van Sonnenberg E, Hajek P, Gylys-Morin V, Varney RA, Baker L, Casola G, Christensen R, Mattrey RF (1988) A wire-sheath system for MR-guided biopsy and drainage: laboratory studies and experience in 10 patients. AJR 151:815–817Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • M. E. Ladd
    • 1
  1. 1.MRI Center, Department of Medical RadiologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations