Interventional MR with a Hybrid High-Field System

  • J. J. van Vaals
Part of the Medical Radiology book series (MEDRAD)


Magnetic resonance (MR) imaging provides high soft tissue contrast and easy visualization of vessels at the same time. In addition, image contrast can be manipulated, depending on the sequence used. Its oblique, multiplanar, three-dimensional imaging capabilities greatly enhance accuracy and aid visualization of complex anatomy. MR can provide functional information as well and can be used for perfusion studies and qualitative and quantitative flow studies. Subsecond imaging is possible, although with low resolution.


Magn Reson Image Focus Ultrasound Magnetic Resonance System Interventional Magnetic Resonance Imaging Magnetic Resonance Guidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman JL, Offut MC, Buxton RB, Brady TJ (1986) Rapid 3D tracking of small RF coils. In: Book of abstracts, 5th Annual Meeting of Society of Magnetic Resonance in Medicine, 19–22 Aug 1986, Montreal. Society of Magnetic Resonance in Medicine, Berkeley, p 1131Google Scholar
  2. Adam G, Neuerburg J, Bücker A, et al (1997) Interventional MR: first clinical experience on a 1.5 T MR system combined with C-arm fluoroscopy. Invest Radiol 32:191–197PubMedCrossRefGoogle Scholar
  3. Bahn MM, Oser AB, Cross DT (1996) CT and MRI of stroke. J Magn Reson Imag 6:833–845CrossRefGoogle Scholar
  4. Bakker CJG, Hoogeveen RM, Weber J, van Vaals JJ, Viergever MA, Mali WPTM (1996) Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn Reson Med 36:816–820PubMedCrossRefGoogle Scholar
  5. Bakker CJG, Hoogeveen RM, Hurtak WF, van Vaals JJ, Viergever MA, Mali WPTM (1997) MR-guided endovascular interventions: susceptibility-based catheter and near-real-time imaging technique. Radiology 202:273–276PubMedGoogle Scholar
  6. Barnwell SL (1997) Thrombolytic therapy for acute stroke: indications, technique, and results. In: Proceedings, SCVIR 22nd Annual Scientific Meeting, Washington DC, 8–13 March, J Vase Intervent Radiol 8 [Suppl]:28–32Google Scholar
  7. Bieze J (1993) Radiation exposure risks haunt interventionalists. Diagn Imag 8:68–79Google Scholar
  8. Bieze J (1994) Image guidance lowers costs, risks of surgery. Diagn Imag 4:53–61Google Scholar
  9. Camarate PJ, Heros RC, Latchaw RE (1994) “Brain attack”: the rationale for treating stroke as a medical emergency Neurosurgery 34:144–158CrossRefGoogle Scholar
  10. Capasso P, Trotteur G, Flandroy P, Dondelinger RF (1996) A combined CT and angiography suite with a pivoting table. Radiology 199:561–563PubMedGoogle Scholar
  11. Cline HE, Schenck JF, Hynynen K, Watkins RD, Souza SP, Jolesz FA (1992) MR-guided focused ultrasound surgery. J Comput Assist Tomogr 16:956–965PubMedCrossRefGoogle Scholar
  12. Damascelli B, Marchiano A, Spreafico C, et al (1992) CT and fluoroscopy: toward a dual unit. J Intervent Radiol 7:91–96Google Scholar
  13. Delannoy J, Chen C, Turner R, et al (1991) Noninvasive temperature imaging using diffusion MRI. Magn Reson Med 19:333–339PubMedCrossRefGoogle Scholar
  14. de Poorter J (1995) Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med 34:359–367PubMedCrossRefGoogle Scholar
  15. de Zwart J, van Gelderen P, Kelly DJ, Moonen CTW (1996) Fast magnetic-resonance temperature imaging. J Magn Reson 112:86–90CrossRefGoogle Scholar
  16. Duckwiler G, Lufkin RB, Teresi L, et al (1989) Head and neck lesions: MR-guided aspiration biopsy. Radiology 170:519–522PubMedGoogle Scholar
  17. Dumoulin CL, Souza SP, Darrow RD (1993) Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29:411–415PubMedCrossRefGoogle Scholar
  18. Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173:255–263PubMedGoogle Scholar
  19. Feinberg DA, Hoenninger LE, Kaufman CL, Watts JC, Arakawa M (1985) Inner volume MR imaging: technical concepts and their application. Radiology 156:743–747PubMedGoogle Scholar
  20. Frenzel T, Roth K, Koßler S, Radüchel B, Bauer H, Platzek J, Weinmann H-J (1996) Noninvasive temperature measurement in vivo using a temperature-sensitive lanthanide complex and lH magnetic resonance spectroscopy. Magn Reson Med 35:364–369PubMedCrossRefGoogle Scholar
  21. Glowinski A, Adam G, Bücker A, Neuerburg J, van Vaals JJ, Günther RW (1996) Catheter visualization for interventional MR by actively controlled locally induced field inhomogeneities. In: Proceedings of 4th Meeting of International Society of Magnetic Resonance in Medicine, 27 April — 3 May 1996, New York. Society of Magnetic Resonance in Medicine, Berkeley, p 51Google Scholar
  22. Glowinski A, Adam G, Bücker A, Neuerburg J, van Vaals JJ, Günther RW (1997) Catheter visualization using locally induced, actively controlled field inhomogeneities. Magn Reson Med 38 (in press)Google Scholar
  23. Hathout G, Lufkin R, Jabour B, Andrews J, Castro D (1992) MR-guided aspiration cytology in the head and neck at high field strength. J Magn Reson Imaging 2:93–94PubMedCrossRefGoogle Scholar
  24. Higashida RT, Tsai FY, Halbach VV, Barnwell SL, Dowd CF, Hieshima GB (1995) Interventional neurovascular techniques in the treatment of stroke: state-of-the-art therapy. J Intern Med 237:105–115PubMedCrossRefGoogle Scholar
  25. Hill CR, ter Haar GR (1995) High intensity focused ultrasound — potential for cancer treatment. Br J Radiol 68:1296–1301PubMedCrossRefGoogle Scholar
  26. Hindman JC (1996) Proton resonance shift of water in the gas and liquid states. J Chem Phys 44:4582–4592CrossRefGoogle Scholar
  27. Hynynen K, Darkazanli A, Unger E, Schenck JF (1993) MRI-guided noninvasive ultrasound surgery. Med Phys 20:107–115PubMedCrossRefGoogle Scholar
  28. Ishihara Y, Calderon A, Watanabe H, et al (1992) A precise and fast temperature mapping method using water proton chemical shift. In: Proceedings of 11th Meeting of Society of Magnetic Resonance in Medicine, 8–14 Aug, 1992, Berlin. Society of Magnetic Resonance in Medicine, Berkeley, p 4803Google Scholar
  29. Ishihara y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–823PubMedCrossRefGoogle Scholar
  30. Jolesz FA (1996) Image-guided procedures and the operating room of the future. Radiology 201(P):23Google Scholar
  31. Jolesz FA, Jakab PD (1991) Acoustic pressure wave generation within an MR imaging system: potential medical applications. J Magn Reson Imaging 1:609–613PubMedCrossRefGoogle Scholar
  32. Jolesz FA, Bleier AR, Jakab PD, Ruenzel PW, Huttl K, Jako GJ (1988) MR imaging of laser-tissue interactions. Radiology 168:249–253PubMedGoogle Scholar
  33. Köchli VD, McKinnon GC, Hofmann E, von Schulthess GK (1994) Vascular interventions guided by ultrafast MR imaging: evaluation of different materials. Magn Reson Med 31:309–314PubMedCrossRefGoogle Scholar
  34. Kouwenhoven M (1997) Contrast-enhanced MR angiography, methods, limitations and possibilities. Acta Radiol Suppl (Stockh) 412:57–67Google Scholar
  35. Kuroda K, Suzuki Y, Ishihara Y, Okamoto K, Suzuki Y (1996) Temperature mapping using water proton chemical shift obtained with 3D-MRSI: feasibility in vivo. Magn Reson Med 35:20–29PubMedCrossRefGoogle Scholar
  36. Ladd ME, Erhart P, Debatin JF, Romanowski BJ, Boesiger P, McKinnon GC (1996) Biopsy needle susceptibility artifacts. Magn Reson Med 36:646–651PubMedCrossRefGoogle Scholar
  37. Langsaeter L, Hill DLG, Keevil SF, Summers PE, Zhao J (1997) Tracking of an MR-compatible microendoscope for interventional MRI of the paranasal sinuses. In: Proceedings of 5th Meeting of International Society of Magnetic Resonance in Medicine, 14–18 April, 1997, Vancouver. Society of Magnetic Resonance in Medicine, Berkeley, p 1929Google Scholar
  38. LeBihan D, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion: application of hyperthermia. Radiology 171:853–857Google Scholar
  39. Leung DA, Debatin JF, Wildermuth S, et al (1995) Real-time biplanar needle tracking for interventional MR imaging procedures. Radiology 197:485–488PubMedGoogle Scholar
  40. Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. Am J Roentgenol 166:1337–1345Google Scholar
  41. Lüdeke KM, Röschmann P, Tischler R (1985) Susceptibility artifacts in NMR imaging. Magn Reson Imaging 3:329–343PubMedCrossRefGoogle Scholar
  42. Lufkin RB (1995) Interventional MR imaging. Radiology 197:16–18PubMedGoogle Scholar
  43. Lufkin R, Teresi L, Hanafee W (1987) New needle for MR-guided aspiration cytology of the head and neck. Am J Roentgenol 149:380–382Google Scholar
  44. Lufkin R, Teresi L, Chiu L, Hanafee W (1988) A technique for MR-guided needle placement. Am J Roentgenol 151:193–196Google Scholar
  45. Martin AJ, Plewes DB, Henkelman RM (1992) MR imaging of blood vessels with an intravascular coil. J Magn Reson Imaging 2:421–429PubMedCrossRefGoogle Scholar
  46. Martin AJ, McLoughlin RF, Barberi EA, Rutt BK (1996) An expandable intravenous RF coil for imaging the artery wall. In: Proceedings of 4th Meeting of International Society of Magnetic Resonance in Medicine, 27 April — 3 May, 1996, New York. Society of Magnetic Resonance in Medicine, Berkeley, p 402Google Scholar
  47. Matchar DB, Duncan PW (1994) Cost of stroke. In: Grotta JC (ed) Stroke: clinical updates, vol 5(3). National Stroke Association, Englewood, Colo, pp 9–12Google Scholar
  48. McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, Manning WJ (1997) Prospective adaptive navigator correction for breath-hold MR coronary angiography. Magn Reson Med 37:148–152PubMedCrossRefGoogle Scholar
  49. Moonen CTW, Liu G, van Gelderen P, Sobering G (1992) A fast gradient-recalled MRI technique with increased sensitivity to dynamic susceptibility effects. Magn Reson Med 26:184–189PubMedCrossRefGoogle Scholar
  50. Moonen CTW, Madio D, Olsen A, DesPres D, van Gelderen P, Fawcett T, Holbrook N (1997) On the feasibility of MRI guided focused ultrasound for local induction of gene expression. In: Proceedings of 5th Meeting of International Society of Magnetic Resonance in Medicine, 14–18 April 1997, Vancouver. Society of Magnetic Resonance in Medicine, Berkeley, p 526Google Scholar
  51. Mueller PR, Stark DD, Simeone JF, et al (1986) MR-guided aspiration biopsy: needle design and clinical trials. Radiology 161:605–609PubMedGoogle Scholar
  52. Ocali O, Atalar E (1997) Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med 37:112–118PubMedCrossRefGoogle Scholar
  53. Oshinski JN, Hofland L, Mukundan S Jr, Dixon WT, Parks WJ, Pettigrew RI (1996) Two-dimensional coronary MR angiography without breath holding. Radiology 201:737–743PubMedGoogle Scholar
  54. Parker DL, Smith V, Sheldon P, Crooks LE, Fussel L (1983) Temperature distribution measurements in two-dimensional NMR imaging. Med Phys 10:321–325PubMedCrossRefGoogle Scholar
  55. Pease GR, Wong STS, Roos MS, Rubinsky B (1995) MR image-guided control of cryosurgery. J Magn Reson Med 5:753–760Google Scholar
  56. Prince MR, Yucel EK, Kaufman JA, Harrison D, Geller SC (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 3:877–881PubMedCrossRefGoogle Scholar
  57. Prince MR, Grist TM, Debatin JF (1997) 3D contrast MR angiography. Springer, Berlin Heidelberg New YorkGoogle Scholar
  58. Rasche V, de Boer RW, Holz D, Proksa R (1995) Continuous radial data acquisition for dynamic MRI. Magn Reson Med 34:754–761PubMedCrossRefGoogle Scholar
  59. Rasche V, Holz D, Köhler J, Proksa R, Röschmann P (1997) Catheter tracking using continuous radial MRI. Magn Reson Med 37:963–968PubMedCrossRefGoogle Scholar
  60. Riederer SJ, Tasciyan T, Farzaneh F, et al (1988) MR fluoroscopy: technical feasibility. Magn Reson Imaging 8:1–15Google Scholar
  61. Rubin GD, Beaulieu CF, Argiro V, et al (1996) Perspective volume rendering of CT and MR images: applications for endoscopic imaging. Radiology 199:321–330PubMedGoogle Scholar
  62. Rubinsky B, Gilbert JC, Onik GM, Roos MS, Wong STS, Brennan KM (1993) Monitoring cryosurgery in the brain and in the prostate with proton NMR. Cryobiology 30:191–199PubMedCrossRefGoogle Scholar
  63. Shellock FG, Shellock VJ (1996) Ceramic surgical instruments: ex vivo evaluation of compatibility with MR imaging at 1.5 T. J Magn Reson Imaging 6:954–956PubMedCrossRefGoogle Scholar
  64. Silverman SG, Collick BD, Figueira MR, et al (1995) Interactive MR-guided biopsy in an open-configuration MR imaging system. Radiology 197:175–181PubMedGoogle Scholar
  65. Souza SP (1992) Uncertainties in temperature mapping via diffusion imaging. In: Proceedings of 11th Meeting of Society of Magnetic Resonance in Medicine, 8–14 August, 1992, Berlin. Society of Magnetic Resonance in Medicine, Berkeley, p 1214Google Scholar
  66. Stollberger R, Ebner F, Fan M, Ascher PW (1992) Temperaturmapping mittels MR-imaging am Beispiel der Laserkoagulation von Gehirngewebe. Biomed Tech (Berlin) 57:209–211CrossRefGoogle Scholar
  67. Stollberger R, Fan M, Ebner F, Ascher PW, Kleinert R (1993) Monitoring of temperature changes in heterogeneous tissues for the monitoring of hyperthermia. In: Proceedings of 12th Meeting of Society of Magnetic Resonance in Medicine, 14–20 August, 1993, New York. Society of Magnetic Resonance in Medicine, Berkeley, p 156Google Scholar
  68. Stollberger R, Huber D, Renhard W, Glanzer H (1997) Influence of the temperature dependent susceptibility on monitoring of interstitial tissue coagulation using the proton resonance frequency method. In: Proceedings of 5th Meeting of International Society of Magnetic Resonance in Medicine, 14–18 April, 1997, Vancouver. Society of Magnetic Resonance in Medicine, Berkeley, p 1963Google Scholar
  69. Tanaka H, Eno K, Kato H, Ishida T (1981) Possible application of noninvasive thermometry for hyperthermia using NMR. Nippon Acta Radiol 41:897–899PubMedGoogle Scholar
  70. van Vaals JJ, van Yperen GH, Hoogenboom TLM, Duijvestijn MJ (1994) Local Look (LoLo): zoom-fluoroscopy of a moving target. In: Proceedings of 1st Meeting of Society of Magnetic Resonance, 5–9 March 1994, Dallas. J Magn Reson Imaging 4(P):38Google Scholar
  71. Vitkin IA, Moriarty JA, Peters RD, et al (1997) Magnetic resonance imaging of temperature changes during interstitial microwave heating: a phantom study. Med Phys 24:269–277PubMedCrossRefGoogle Scholar
  72. Vogl TJ, Müller PK, Hammerstingl R, et al (1995) Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results. Radiology 196:257–265PubMedGoogle Scholar
  73. Wagner LK, Eifel PJ, Geise RA (1994) Potential biological effects following high X-ray dose interventional procedures. J Vase Interv Radiol 5:71–84CrossRefGoogle Scholar
  74. Young IR, Hand JW, Oatridge A, Prior MV (1994) Modeling and observation of temperature changes in vivo using MRI. Magn Reson Med 32:358–369PubMedCrossRefGoogle Scholar
  75. Young IR, Hajnal JV, Roberts IG, Ling JX, Hill-Cottingham RJ, Oatridge A, Wilson JA (1996) An evaluation of the effects of susceptibility changes on the water chemical shift method of temperature measurements in human peripheral muscle. Magn Reson Med 36:366–374PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. J. van Vaals
    • 1
  1. 1.Philips Medical SystemsClinical Science MRBestThe Netherlands

Personalised recommendations