Skip to main content

Plant Viral Vectors Based on Tobamoviruses

  • Chapter
Plant Biotechnology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 240))

Abstract

Viruses are ubiquitous in plants, particularly those associated with agriculture. Plant viruses have a range of features that extend from detrimental to potentially beneficial. Economic loses to agriculture caused by viral infections led to the development of genetic systems that allow manipulation of the virus to manage plant diseases; however, these genetic systems have also led to the development of viruses as beneficial tools, exploiting the ability of the small plus-sense single-stranded RNA viruses that commonly infect higher plants to rapidly amplify virus-related RNAs and produce large amounts of proteins. As early as 1983 Siegel described a strategy for the development of virus-based vectors to express foreign genes in plants, although at that time the technology for manipulation of viruses through cDNA cloning was not yet available, and the issue was controversial (Siegel 1983; van Vloten-Doting 1985). Since that time, in vitro genetic systems have been developed for viruses in different taxonomic groups and several of these have been manipulated to transiently express foreign genes (for review, see Kearney et al. 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baulcombe D. Davenport G. Angell S, English J. Ratclilh E. Ruiz T. Voinnct O. Hamilton A (1997) American Phytopath. Soc Aug 9--13, Rochester

    Google Scholar 

  • Beachy RN. Zaitlin M (1977) Characterization and in vitro translation of the RNA. from less than full-length. virus related. nucleoprotein rods present in tobacco mosaic sirus preparations. Virology 81: 160–169

    Article  PubMed  CAS  Google Scholar 

  • Beck DL. Dawson WO (1990) Deletion of repeated sequences from tobacco mosaic sirus mutants with i o coat protein genes. Virology 177: 462–469

    Article  PubMed  CAS  Google Scholar 

  • Brisson N, Paszkowski J, Penswick JR, Gronenborn B, Potrykus I, Hohn T (1984) Expression of a bacterial gene in plants by using a viral vector. Nature 310: 511–514

    Article  CAS  Google Scholar 

  • Butler PJG, Bloomer AC, Finch JT (1992) Direct visualization of the structure of the “20S” aggregate of coat protein of tobacco mosaic virus. The “disk” is the major structure at pH\7.0 and the proto-helix at lower pH. J Mol Biol 224: 381–394

    Article  PubMed  CAS  Google Scholar 

  • Carroll WL, Thielemans K, Dilley J, Levy R (1986) Mouse x human heterohybridomas as fusion partners with human B cell tumors. J Immunol Methods 89: 61–72

    Article  PubMed  CAS  Google Scholar 

  • Casper SJ, Holt CA (1996) Expression of the green fluorescent gene from a tobacco mosaic virus-based vector. Gene 173: 69–73

    Article  PubMed  CAS  Google Scholar 

  • Culver JN, Dawson WO, Plonk K, Stubbs G (1995) Site-directed mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. Virology 206: 724–730

    Article  PubMed  CAS  Google Scholar 

  • Culver JN, Lehto K, Close SM, Hilf ME, Dawson WO (1993) Genomic position affects the expression of tobacco mosaic virus movement and coat protein genes. Proc Natl Acad Sci USA 90: 2055–2059

    Article  PubMed  CAS  Google Scholar 

  • Culver JN, Stubbs G, Dawson WO (1994) Structure-function relationship between tobacco mosaic viruscoat protein and hypersensitivity in Nicotiana srlrestris. J Mol Biol 242: I30–138

    Google Scholar 

  • Dalsgaard K, Uttenthal A, Jones TD, Xu F, Merryweather A, Hamilton WDO, Langeveld JPM, Boshuizen RS, Kamstrup S, Lomonossoff GP, Porta C, Vela C, Casal JI, Meloen RH, Rodgers PB (1997) Plant-derived vaccine protects target animals against a viral disease. Nat Biotechnolnol 15: 248–252

    Article  CAS  Google Scholar 

  • Dawson WO, Lewandowski DJ, Hilf ME, Bubrick P, Raffo AJ, Shaw JJ, Grantham GL, Desjardins PR (1989) A tobacco mosaic virus-hybrid expresses and loses an added gene. Virology 173: 285–292

    Article  Google Scholar 

  • Dawson WO, Bubrick P, Grantham GL (1988) Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomology. Phytopathology 78: 783–789

    Article  CAS  Google Scholar 

  • Desnick RJ, Ioannou YA, Eng CM (1995) x-Galactosidase A deficiency: Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic bases of inherited diseases. McGraw-Hill, New York, pp 2741–2784

    Google Scholar 

  • de Zoeten GA, Penswick JR, Horisberger MA, Ahl P, Schultze M, Hohn T (1989) The expression, localization, and effect of a human interferon in plants. Virology 172: 213–222

    Article  PubMed  Google Scholar 

  • Donson J, Kearney CM, Hilf ME, Dawson WO (1991) Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc Natl Acad Sci USA 88: 7204–7208

    Article  PubMed  CAS  Google Scholar 

  • Fitchen J, Beachy RN, Hein MB (1995) Plant virus expressing hybrid coat protein with added murine epitope elicits autoantibody response. Vaccine 13: 1051–1057

    Article  PubMed  CAS  Google Scholar 

  • Fraser RSS. (1987) Biochemistry of virus-infected plants. Research Studies, Letchworth, pp 1–7

    Google Scholar 

  • Goelet P, Lomonossoff GP, Butler PJG, Akam ME, Gait MJ, Karn J (1982) Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci USA 79: 5818–5822

    Article  PubMed  CAS  Google Scholar 

  • Gronenborn B, Gardner RC, Schaefer S, Shepherd R.1 (1981) Propagation of foreign DNA in plants using cauliflower mosaic virus as vector. Nature 294: 773–776

    CAS  Google Scholar 

  • Hakim I, Levy S, Levy R (1996) A nine-amino acid peptide from IL-I(J augments antitumor immune responses induced by protein and DNA vaccines. J Immunol 157: 5503–5511

    PubMed  CAS  Google Scholar 

  • Hamamoto H, Sugiyama Y, Nakagawa N, Hashida E, Matsunaga Y, Takemoto S, Watanabe Y, Okada Y (1993) A new tobacco mosaic virus vector and its use for the systemic production of angiotensinI-converting enzyme inhibitor in transgenic tobacco and tomato. Biotechnology 11: 930–932

    Article  PubMed  CAS  Google Scholar 

  • Haq TA, Mason H, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268: 714–716

    Article  PubMed  CAS  Google Scholar 

  • Haynes JR, Cunningham J, von Seefried A. Lennick M, Garvin RT, Shen SH (1986) Development of genetically engineered candidate polio vaccine employing the self-assembling properties of tobacco mosaic virus coat protein. Biotechnology 4: 637–641

    Article  CAS  Google Scholar 

  • Hsu FJ, Caspar CB, Czerwinski D, Kwak LW, Liles TM, Syrengelas A, Taidi-Laskowski B, Levy R (1997) Tumor-specific, idiotype vaccines in the treatment of patients with B-cell lymphoma-long-term results of a clinical trial. Blood 89: 3129–3135

    PubMed  CAS  Google Scholar 

  • Hunter T, Hunt T, Knowland J, Zimmern D (1976) Messenger RNA for the coat protein of tobacco mosaic virus. Nature 260: 759–764

    Article  PubMed  CAS  Google Scholar 

  • Joelson T, Akerblom L, Oxefelt L, Strandberg B, Tomenius K, Morris TJ (1997) Presentation of a foreign peptide on the surface of tomato bushy stunt virus. J Gen Virol 78: 1213–1217

    PubMed  CAS  Google Scholar 

  • Kearney CM Donson J, Jones GE, Dawson WO (1993) Low level of genetic drift in foreign sequences replicating in an RNA virus in plants. Virology 192: 11–17

    Article  PubMed  CAS  Google Scholar 

  • Kearney CM, Chapman S, Turpen TH. Dawson WO (1995) High levels of gene expression in plants using RNA viruses as transient expression vectors. Plant Molecular Biology Manual. Kluwer Academic, Dordrecht

    Google Scholar 

  • Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92: 1679–1683

    Article  PubMed  CAS  Google Scholar 

  • Kumagai MH. Turrpen TH, Weinzettl N, Della-Cioppa G, Tupen AM, Donson J. Hilf ME. Grantham GL, Dawson WO, Chow TP, Piatak Jr. M. Grill LK (1993) Rapid high-level expression of biologically active a-trichosanthin in transfected plants by an RNA viral vector. Proc Natl Acad Sci USA 90: 427–430

    Article  PubMed  CAS  Google Scholar 

  • Leathers V, Tanguay R, Kobayashi M, Gallic DR (1993) A phylogenetically conserved sequence within viral 3’ untranslated pseudoknots regulates translation. Mol Cell Biol 13: 5331–5347

    PubMed  CAS  Google Scholar 

  • Mans RMW, Pleij CWA, Bosch L (1991) tRNA-like structures. Structure function and evolutionary significance. Eur. J Biochem 201: 303–324

    Article  PubMed  CAS  Google Scholar 

  • Mason HS. Lam DM-K, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA 89:11745–11749

    Article  PubMed  CAS  Google Scholar 

  • Mason HS. Ball.IM, Shi JJ, Jiang X, Estes MK, Arntzen CJ. (1996) Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral inununogenicity in mice. Proc tiutl Acad Sci USA 93:5335–5340

    Article  CAS  Google Scholar 

  • McCormick AA. Kumagai MK, Hanley K. Turpen TH, Hakim I, Grill L.K. Tusc D. Less S, Levy R (submitted) Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single chain Fv epitopes in tobacco plants

    Google Scholar 

  • McGarvey PB. Hammond J. Dienelt MM. Hooper DC, Fu ZF, Dietzschold B, Koprotiski H, Michaels FH (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology 13: 1484–1487

    Article  PubMed  CAS  Google Scholar 

  • McLain L, Porta C, Lomonossoff GP, Durrani Z, Dimmock NJ (1995) Human immunodeficiency virus type 1-neutralizing antibodies raised to a glycoprotein 41 peptide expressed on the surface of a plant virus. AIDS Res Hum Retroviruses 11: 327–334

    Article  PubMed  CAS  Google Scholar 

  • Modelska A, Dietzschold B, Flyesh N. Fu ZE. Steplewski K, Hooper DC. Koprottski It Yusihov V (1998) Immunization against rabies with plant-derived antigen. Proc Natl.Acad Sci USA 95: 2481–2485

    Article  PubMed  CAS  Google Scholar 

  • Namba K, Pattaneyek R. Stubbs G (1989) Visualization of protein-nucleic acid interactions in a virus: refined structure of intact tobacco mosaic virus at 2.9 A resolution by A-ray fiber diffraction. J Mol Biol 208: 7583–7588

    Article  Google Scholar 

  • Pleij CWA. Abrahams JP. van Belkum A, Rietvcld K, Bosch L (1987) The spatial folding of the 3’ noncoding region of aminoacvlatable plant viral RNAS. In: Brinson M. Rueckert T (eds) Positive strand RNA viruses. Liss, New York, pp 299–316

    Google Scholar 

  • Porta C, Spall VE, Loveland J, Johnson JE, Barker PJ. Lomonossoft GP (1994) Development of cowpca mosaic virus as a high-yielding system for the presentation of foreign peptides. Virology 202:949–955

    Article  PubMed  CAS  Google Scholar 

  • Quinn M. Hantzopoulos P, Fidanza V, Calhoun DH (1987) A genontic clone containing the promoter for the gene encoding the human lysosomal enzyme. α-galactosidase A. Gene 58: 177–188

    CAS  Google Scholar 

  • Ramakrishnan U. Rohll JB, Spall VE, Shanks M. Maule AJ, Johnson JE. Lomonossoft OP (1993) Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology 197: 366–374

    Article  Google Scholar 

  • Scholthof HB, Morris TJ, Jackson AO (1993) The capsid protein gene of tomato bushy stunt virus is dispensable for systemic movement and can be replaced for localized expression of foreign genes. Mol Plant Microbe Interact 6: 309–322

    Article  CAS  Google Scholar 

  • Scholthof HB, Scholthof K-BG (1996) Plant virus gene vectors for transient expression of foreign proteins in plants. Annu Rev Phytopathol 34: 299–323

    Article  PubMed  CAS  Google Scholar 

  • Siegel A (1983) RNA viruses as cloning vehicles. Phytopathology 73: 775

    Google Scholar 

  • Siegel A, Hari V, Kolacz K (1978) The effect of tobacco mosaic virus infection and virus-specific protein synthesis in protoplasts. Virology 85: 494

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu N, Ishikawa N, Meshi T. Okada Y (1987) Expression of bacterial chloramphenicol acetvltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J 6: 307

    PubMed  CAS  Google Scholar 

  • Tupen TH, Reinl S. Charoenvit Y, Hoffman SL. Fallarme V, Grill LK (1995) Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Biotechnology 13: 53–57

    Article  Google Scholar 

  • Usha R. Rohll JB, Spall VF, Shanks M. Maule AJ, Johnson.IE, Lomonosoll’GP 1993 Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology 197:366–374

    Article  PubMed  CAS  Google Scholar 

  • van Belkum A, Abraham JP, Pleij CWA. Bosch L (1985) Five pseudoknots are present at the 204 nucleotide long 3’ noncoding region of tobacco mosaic virus RNA. Nucleic,kids Res 13:7673–7686

    Article  Google Scholar 

  • van Vloten-Doting L. Bol JF, Cornelissen B (1985) Plant-virus-based sectors for gene transfer will be of limited use because of the high error frequency during viral RNA synthesis. Plant Mol Biol 4: 373–326

    Article  Google Scholar 

  • Welter LM, Mason HM, Lu W, Lam DM-K, Welter MW (1996) Effective immunization of piglets with transgenic potato plants expressing a truncated TGEV S protein. Vaccines: new technologies and applications. Cambridge Healthtech Institute

    Google Scholar 

  • Yusibov V, Modelska A, Steplewski K, Agadjanyan M, Weiner D, Hooper C. Koprowski H (1997) Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1. Proc Natl Acad Sci USA 94: 5784–5788

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yusibov, V., Shivprasad, S., Turpen, T.H., Dawson, W., Koprowski, H. (2000). Plant Viral Vectors Based on Tobamoviruses. In: Hammond, J., McGarvey, P., Yusibov, V. (eds) Plant Biotechnology. Current Topics in Microbiology and Immunology, vol 240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60234-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60234-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66265-5

  • Online ISBN: 978-3-642-60234-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics