Skip to main content

Abstract

The elucidation of the mechanism of enzyme reaction generally requires knowledge of the maximum values of the thermodynamic parameters. High hydrostatic pressure associated with temperature can lead to such data. A description of these approaches is given together with applications where data treatment can be achieved using the general “induced-fit” theory which implies that the binding of substrate to enzyme is a two-step process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morild, E. (1981); The theory of pressure effects on enzymes; Adv. Prot, Chem., 34, 93–166.

    Article  CAS  Google Scholar 

  2. Glasstone, S., Laidler, K.J. and Eyring, H. (1941); The theory of rate processes; McGraw-Hill, New York.

    Google Scholar 

  3. Kramers, H.A. (1940); Brownian motion in a field of force and the diffusion model of chemical reaction; Physica, 7, 284–304.

    Article  CAS  Google Scholar 

  4. Balny, C., Travers, F., Barman, T. and Douzou, P. (1985); Cryoenzymic studies as a tool for investigating activated complexes: creatine kinase.ADP.Mg.nitrate.creatine as a model; Proc. Natl. Acad. Sci. USA, 82, 7495–7499.

    Article  CAS  Google Scholar 

  5. Barman, T., Travers, F., Balny, C., Hui Bon Hoa, G. and Douzou, P. (1986); New trends in cryoenzymology: probing the functional role of protein dynamics by singlestep kinetics; Biochimie, 68, 1041–1051.

    Article  CAS  Google Scholar 

  6. Balny, C., Travers, F., Barman, T. and Douzou, P. (1987); Thermodynamics of the two step formation of horseradish peroxidase compound I; Eur. Biophys. J., 14, 375–383.

    Article  CAS  Google Scholar 

  7. Balny, C., Masson, P. and Travers, F. (1989); Some recent aspects of the use of high-pressure for protein investigations in solution; High Pres. Res., 2, 1–28.

    Article  Google Scholar 

  8. Balny, C. (1996); Transient enzyme kinetics at high pressure; in High Pressure Effects in Molecular Biophysics and Enzymology, Eds J.L. Markley et al., Oxford Univ. Press.

    Google Scholar 

  9. Douzou, P. (1977) Cryobiochemistry ( Academic Press, London).

    Google Scholar 

  10. Travers, F. and Barman, T. (1995); Cryoenzymology: how to practice kinetic and structural studies; Biochimie, 77, 937–948.

    Article  CAS  Google Scholar 

  11. Balny, C., Saldana, J.L. and Dahan, N. (1984); High pressure stopped-flow spectrometry at low temperatures; Anal. Biochem., 139, 178– 189.

    Article  CAS  Google Scholar 

  12. Balny, C., Saldana, J.L. and Dahan, N. (1987); High pressure stopped-flow fluorometry at subzero temperatures; Anal. Biochem., 163, 309–315.

    Article  CAS  Google Scholar 

  13. Hui Bon Hoa, G., Hamel, G., Else, A., Weill, G. and Herve, G. (1990); A reactor permitting injection and sampling for steady state studies of enzymatic reactions at high pressure: tests with aspartate transcarbamylase; Anal. Biochem., 187, 258–261.

    Article  Google Scholar 

  14. Frank, J., Duine, J.A. and Balny, C. (1991); Preliminary studies on quinoprotein glucose dehydrogenase under extreme conditions of temperature and pressure; Biochimie, 73, 611–613.

    Article  Google Scholar 

  15. Balny, C., Hayashi, R., Heremans, K. and Masson, P. (Eds), (1992); High Pressure and Biotechnology, Colloque INSERM, Vol. 224, John Libbey, London.

    Google Scholar 

  16. Mozhaev, V.V., Heremans, K., Frank, J., Masson, P. and Balny, C. (1994); Exploiting the effects of high hydrostatic pressure in biotechnological applications; 12, 493–501.

    CAS  Google Scholar 

  17. Mozhaev, V.V., Heremans, K., Frank, J., Masson, P. and Balny, C. (1996); High pressure effects on protein structure and function; Proteins: Struct. Func. Gene., 24, 81–91.

    Article  CAS  Google Scholar 

  18. Rariy, R.V., Bee, N., Klyachko, N.L., Levashov, A.V. and Balny, C. (1998); Thermobarostability of α-chymotrypsin in reversed micelles of Aerosol OT in octane solvated by water-glycerol mixtures; Biotech. Bioeng., 57, 552–556.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balny, C. (1999). High Pressure Enzyme Kinetics. In: Ludwig, H. (eds) Advances in High Pressure Bioscience and Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60196-5_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60196-5_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64300-2

  • Online ISBN: 978-3-642-60196-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics