Advertisement

Interaction Between Osmotic and Hydrostatic Pressure in Yeast Inactivation

  • J. M. Perrier-Cornet
  • M. Hayert
  • E. Saurat
  • C. Milesse
  • P. Gervais
Conference paper

Abstract

The protective effect of an osmotic perturbation on high-pressure inactivation has been investigated using a yeast strain:Saccharomyces cerevisiae. Osmotic shocks have been carried out with binary medium (glycerol/sorbitol and water) with or without glucose. Variations of osmotic level, osmotic shift kinetics and time between osmotic and hydrostatic treatment (350 MPa/10 min) have allowed the characterization of cell baroprotection. Two different cumulative baroprotection effects have been distinguished: one conferred by the solute on biological structures and the other related to the osmotic stress, cell volume variations and stress metabolism response (HSP, trehalose). These experiments have also exhibited a repair phase, which occurred immediately after the high-pressure treatment and required the presence of glucose.

Keywords

Heat Shock Protein Osmotic Shock Osmotic Stress Response Osmotic Response Binary Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cheftel, J.C., (1995); Review: High pressure microbial inactivation and food preservation; Food Sci. and Technol. Int., 1, 75–90.CrossRefGoogle Scholar
  2. [2]
    Satomi, M., Yamagushi, T., Okuzumi, M. and Fujii, T., (1995); Effect of conditions on the barotolerance of Escherichia coli; J. Food Hyg. Soc. Japan, 36(1), 29–34.Google Scholar
  3. [3]
    Oxen, P. and Knorr, D., (1993); Baroprotective effects of high solute concentrations against inactivation of Rhodotorula rubra; Food Sci. and Technol., 26(3), 220–223.Google Scholar
  4. [4]
    Oliveira, A.C., Gaspar, L.P., Da Poian, A.T. and Silva, J.L., (1994); Arc repressor will not denature under pressure in the absence of water; J. Mol. Biol., 240, 184–187.CrossRefGoogle Scholar
  5. [5]
    Marechal, P.A. and Gervais, P., (1995); Yeast viability related to the water potential variation: influence on the transient phase; Appi. Microbiol. Biotechnol., 42, 617–622.CrossRefGoogle Scholar
  6. [6]
    Blomberg, A., (1995); Global changes in protein during adaptation of the yeast Saccharomyces cerevisiae to 0.7 M NaCl; J. Bacteriol., 12, 3563–3572.Google Scholar
  7. [7]
    Mager, W.H. and De Kruijff, A.J.J., (1995); Stress-induced transcriptional activation; Microbiol. Rev., 59(3), 506–531.Google Scholar
  8. [8]
    Yamamori, T. and Yura, T., (1980); Temperature-induced synthesis of specific proteins in Escherichia coli: evidence for transcriptional control; J. Bacteriol., 142, 843–851.Google Scholar
  9. [9]
    Iwahashi, H., Obuchi, K., Fujii, S. and Komatsu, Y., (1997); Effect of temperature on Hspl04 and trehalose in barotolerance of Saccharomyces cerevisiae; FEBS Lett., 416, 1–5.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • J. M. Perrier-Cornet
    • 1
  • M. Hayert
    • 1
  • E. Saurat
    • 1
  • C. Milesse
    • 1
  • P. Gervais
    • 1
  1. 1.Laboratoire de Génie des Procédés Alimentaires et BiotechnologiquesENSBANA - Université de BourgogneDijonFrance

Personalised recommendations