Skip to main content

On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity

  • Conference paper
Scientific Computing in Chemical Engineering II

Abstract

The authors have recently developed a mathematical model for the description of the behavior of viscoplastic materials. The model is based on a nonlinear differential equation of order β, where β is a material constant typically in the range 0 < β < 1. This equation is coupled with a first-order differential equation. In the present paper, we introduce and discuss a numerical scheme for the numerical solution of these equations. The algorithm is based on a PECE-type approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blom J. G., Brunner H. (1991) Algorithm 689: Discretized collocation and iterated collocation for nonlinear Volterra integral equations of the second kind.. ACM Trans. Math. Software 17, 167–177

    Article  Google Scholar 

  2. Bownds J. M., Appelbaum L. (1985) Algorithm 627: A FORTRAN subroutine for solving Volterra integral equations. ACM Trans. Math. Software 11, 58–65

    Article  Google Scholar 

  3. Caputo M. (1967) Linear models of dissipation whose Qis almost frequency independent, II. Geophys. J. Royal Astronom. Soc. 13, 529–539

    Google Scholar 

  4. Caputo M., Mainardi F. (1971) A new dissipation model based on memory mechanism. Pure and Applied Geophysics 91, 134–147

    Article  Google Scholar 

  5. Carpinteri A., Mainardi F. (Eds.) (1997) Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien

    Google Scholar 

  6. Diethelm K. (1997) An algorithm for the numerical solution of differential equations of fractional order. Elec. Transact. Numer. Anal. 5, 1–6.

    Google Scholar 

  7. Diethelm K., Freed A. D. (1998) Viscoelastic/viscoplastic material modeling using the fractional calculus. Submitted for publication

    Google Scholar 

  8. Diethelm K., Walz G. (1997) Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16, 231–253

    Article  Google Scholar 

  9. Gorenflo R. (1997) Fractional calculus: Some numerical methods. In [5], 277–290

    Google Scholar 

  10. Hairer E., Nørsett S. P., Wanner G. (1993) Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin

    Google Scholar 

  11. Hairer E., Wanner G. (1991) Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin

    Google Scholar 

  12. Krempl E., Bordonaro C. M. (1995) A state variable model for high strength polymers. Polymer Engineering and Science 35, 310–316

    Article  CAS  Google Scholar 

  13. Linz P. (1985) Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia, PA

    Google Scholar 

  14. Lion A. (1997) Constitutive modelling of viscoplastic material behaviour based on evolution equations of fractional order. In: Khan A. S. (Ed.) Physics and Mechanics of Finite Plastic and Viscoplastic Deformation. Neat Press, Fulton, MD, 61–62

    Google Scholar 

  15. Lubich C. (1986) Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719

    Article  Google Scholar 

  16. Mainardi F. (1997) Fractional calculus: Some basic problems in continuum and statistical mechanics. In [5], 291–348

    Google Scholar 

  17. National Institute of Standards and Technology: Guide to Available Mathematical Software, http://gams.nist.gov

    Google Scholar 

  18. Oldham K. B., Spanier J. (1974) The Fractional Calculus. Academic Press, New York, NY

    Google Scholar 

  19. Samko S. G., Kilbas A. A., Marichev O. I. (1993) Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diethelm, K., Freed, A.D. (1999). On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity. In: Keil, F., Mackens, W., Voß, H., Werther, J. (eds) Scientific Computing in Chemical Engineering II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60185-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60185-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64295-1

  • Online ISBN: 978-3-642-60185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics