Kinetics and Mechanism of Ethylene Polymerization and Copolymerization Reactions with Heterogeneous Titanium-Based Ziegler-Natta Catalysts

  • Yury V. Kissin
  • Robert I. Mink
  • Thomas E. Nowlin
  • Anita J. Brandolini


A detailed kinetic analysis of ethylene homopolymerization reactions and its copolymerization reactions with 1-hexene with a supported Ti-based Ziegler-Natta catalyst shows a number of kinetic features which are interpreted as a manifestation of multi-site catalysis. The catalyst contains several types of active centers which differ in stability and formation rates, the molecular weights of polymer molecules they produce and in their response to the presence of an α-olefin. Several kinetic effects in ethylene polymerization reactions require an introduction of a special kinetic mechanism which postulates an unusually low reactivity of the growing polymer chain containing one ethylene unit, the Ti-C2H5group. This peculiarity of the Ti-C2H5group, which is probably caused by its β-agostic stabilization, predicts two features of ethylene polymerization reactions which have not been described in the literature yet: (a) formation of deuterated ethylenes in ethylene homopolymerization reactions in the presence of deuterium, and (b) an apparently increased reactivity of α-olefins in chain initiation reactions involving the Ti-H bond. Both effects were confirmed experi-mentally.


Ethylene Polymerization Copolymerization Reaction Agostic Interaction Ethylene Homopolymerization Chain Initiation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kissin YV (1985) Isospecific Olefin Polymerization with Heterogeneous Ziegler-Natta Catalysts, Springer Verlag, New York, 1985Google Scholar
  2. 2.
    Kissin YV (1983) In Quirk RP (ed) Transition Metal Catalyzed Polymerizations: Alkenes and Dienes, Harwood Academic Publishers, New York, Part B, p. 597Google Scholar
  3. 3.
    Krentsel BA, Kissin YV, Kleiner VI, Stotskaya LL (1997) Polymers and Copolymers of Higher Alpha-Olefins, Hanser Publishers, MunichGoogle Scholar
  4. 4.
    Munoz-Escalona A, Garcia H, Albornoz A (1987) J Appl Polym. Sci 34: 977CrossRefGoogle Scholar
  5. 5.
    Calabro DC, Lo FY (1988), In Quirk RP (ed) Transition Metal Catalyzed Polymerizations. Ziegler-Natta and Metathesis Polymerizations, Cambridge University Press, New York, p. 729Google Scholar
  6. 6.
    Kissin YV (1989) J Molec Catal 46: 220CrossRefGoogle Scholar
  7. 7.
    Wang JG, Zhang WB, Huang BT (1992) Makromol Chem, Macromol Symp 63: 245CrossRefGoogle Scholar
  8. 8.
    Tait PJT, Downs GW, Akinbami AA (1988), In Quirk RP (ed) Transition Metal Catalyzed Polymerizations. Ziegler-Natta and Metathesis Polymerizations, Cambridge University Press, New York, p. 834Google Scholar
  9. 9.
    Bobrov BN, Echevskaya LG, Kleiner VI, Zakharov VA, Krentsel BA (1990) Vysokomol Soed B32: 457Google Scholar
  10. 10.
    Koivumaki J, Seppala JV (1993) Macromolecules 215: 535Google Scholar
  11. 11.
    Stanovaya SS, Kreitser TV, Sigalova GS, Ivanchev SS (1986) Vysokomol Soed B28: 174Google Scholar
  12. 12.
    Han-Adebkun GC, Ray WH (1997) J Appi Polym Sci 65: 1037CrossRefGoogle Scholar
  13. 13.
    Kryzhanovskii AF, Gapon E, Ivanchev SS (1990) Kinetics & Catalysis 31: 90Google Scholar
  14. 14.
    Mink RI, Nowlin TE (1995) US Patent 5,470,812Google Scholar
  15. 15.
    Kissin YV (1995) J Polym Sci, Part A: Polym Chem 33: 227CrossRefGoogle Scholar
  16. 16.
    Kissin YV (1993) Makromol Chem, Macromol Symp 66: 83CrossRefGoogle Scholar
  17. 17.
    Kissin YV (1995) Macromol Chem, Macromol Symp 89: 113Google Scholar
  18. 18.
    Brookhart M, Schmidt GF, Lincoln MD, Rivers D (1988) In Quirk RP (ed) Transition Metal Catalyzed Polymerizations. Ziegler-Natta and Metathesis Polymerizations, Cambridge University Press, New York, p. 497Google Scholar
  19. 19.
    Burger BJ, Thompson ME, Cotter WD, Bercaw JE (1990) J Amer Chem Soc 112: 1566CrossRefGoogle Scholar
  20. 20.
    Lohrenz JCW, Woo TK, Ziegler T (1995) J Amer Chem Soc 117: 12793CrossRefGoogle Scholar
  21. 21.
    Margl P, Lohrenz JCW, Ziegler T, Blòschl PE (1996) J Amer Chem Soc 118: 4434CrossRefGoogle Scholar
  22. 22.
    Crawford BL, Lancasrer JE, Inskiep RG (1953) J Chem Phys 21: 678CrossRefGoogle Scholar
  23. 23.
    Whitfield RG, Leroi GE (1978) J Chem Phys 68: 4384CrossRefGoogle Scholar
  24. 24.
    Ikeda S, Yamamoto A, Tanaka H (1963) J Polym Sci, Part A–l: 2925Google Scholar
  25. 25.
    Tasumi M, Shimanouchi T, Kenjo H, Ikeda S (1966) J Polym Sci, Part A–l 4: 1011CrossRefGoogle Scholar
  26. 26.
    Tasumi M, Shimanouchi T, Ikeda S (1966) J Polym Sci, Part A–l 4: 1023CrossRefGoogle Scholar
  27. 27.
    Kissin YV, Nowlin TE, Mink RI (1993) Macromolecules 26: 2151CrossRefGoogle Scholar
  28. 28.Kissin YV, Mink RI, Nowlin TE, Brandolini AJ J Polym Sci, in pressGoogle Scholar
  29. 29.
    Grant DM, Paul EG (1964) J Amer Chem Soc 86: 2984CrossRefGoogle Scholar
  30. 30.
    Carman CJ, Tarpley AR, Goldstein JH (1973) Macromolecules 6: 719CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Yury V. Kissin
    • 1
  • Robert I. Mink
    • 1
  • Thomas E. Nowlin
    • 1
  • Anita J. Brandolini
    • 1
  1. 1.Mobil Chemical Co.Edison Research Lab.EdisonUSA

Personalised recommendations