Skip to main content

How to Avoid Gas-Liquid Mass Transfer Limitations during Polymerization of Olefins

  • Conference paper
Metalorganic Catalysts for Synthesis and Polymerization

Abstract

Propene was polymerized using a modern Ziegler-Natta catalyst dispersed in decane. The stirring rate was changed during polymerization, and the observed monomer feed rates were analyzed using a steady state and a dynamic mass balance to obtain mass transfer coefficients. A theoretically founded mass transfer model for a semi batch stirred laboratory reactor was developed. It is shown how the model can be used to secure minimal transport limitations in kinetic experiments during polymerization of olefins. It is found that introducing baffles and sparging considerably decrease the transport resistance at high stirring rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bin, A.K., Chem. Eng. Commun. 1984;31:155.

    Article  CAS  Google Scholar 

  2. Cussler, E. L. Diffusion. Mass transfer in fluid systems.New York: Cambridge University Press; 1984.

    Google Scholar 

  3. Dong, L. Flow Generated by an Impeller and Mass Transfer Across Gas-Liquid Interfaces in Stirred Vessels. Trondheim, Norway: Ph.D. thesis, The Norwegian Institute of Technology; 1991.

    Google Scholar 

  4. Dong, L.; Johansen, S. T., and Engh, T. A., Can. Met. Quart. 1992; 31(4):299.

    CAS  Google Scholar 

  5. Keii, T.; Doi, Y., and Kobayashi, H., J. Polym. Sci., Part A: Polym. Chem. 1973; 11:1881.

    CAS  Google Scholar 

  6. Kittilsen, P.; Tøgersen, R.; Rytter, E., and Svendsen, H., Experimental Study of Gas-Liquid Mass Transfer Limitations in Olefin Polymerization. To be published.

    Google Scholar 

  7. Kittilsen, P.; Tøgersen, R.; Rytter, E., and Svendsen, H.,Modeling of Gas-Liquid Mass Transfer in Semi Batch Olefin PolymerizationTo be published.

    Google Scholar 

  8. Lide, D. R. Handbook of Chemistry and Physics. 78 ed. New York: CRC; 1996.

    Google Scholar 

  9. Nagata, S.; Yokotama, T., and Maeda, H., Mem. Fac. Eng., Kyoto Univ. 1956; 18:13.

    Google Scholar 

  10. Reid, R. C.; Praunsnitz, J. M., and Poling, B. E. The Properties of Gases and LiquidsNewYork: McGraw-Hill; 1987.

    Google Scholar 

  11. Theofanous, T. G.; Houze, R. N., and Brumfield, L. K., Int. J. Heat Mass Transfer. 1976; 19:613.

    Article  Google Scholar 

  12. Thorshaug, K., Støvneng, J.A., Rytter, E., Ystnes, M., Macromolecules, In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kittilsen, P., Tøgersen, R., Rytter, E., Svendsen, H. (1999). How to Avoid Gas-Liquid Mass Transfer Limitations during Polymerization of Olefins. In: Kaminsky, W. (eds) Metalorganic Catalysts for Synthesis and Polymerization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60178-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60178-1_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64292-0

  • Online ISBN: 978-3-642-60178-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics