Skip to main content

A DFT quantum-chemical study of the structures and reactive sites of polymethylalumoxane

  • Conference paper
Metalorganic Catalysts for Synthesis and Polymerization

Abstract

DFT quantum-chemical calculations have been performed to elucidate the geometrical and electronic structure of methylalumoxanes (-Al(Me)0-)n with different size (n=6,8,12). The three-dimensional oxo-bridged (cage) structures of methylalumoxane (MAO) have been analyzed.

It has been found that the cage structure consisting of three layers of [-Al(CH)30-]4 units is the most stable for MAO with n=12. Trimethylaluminium reacts with MAO by cleavage of a Al-O dative bond and the formation of acidic tricoordinated Al-atoms and basic dicoordinated O-atoms in the MAO molecule. Two molecules of AlMe3 are associated with these sites. The total heat of the TMA interaction with MAO depends on the n value and the MAO structure. The reactive sites of MAO are proposed based on the obtained data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Sinn, W. Kaminsky, Adv.Organomet.Chem. 18, 99 (1980)

    Article  CAS  Google Scholar 

  2. W. Kaminsky, M. Miri, H. Sinn, R. Woldt, Macromol.Chem.Rapid Commun. 4, 417(1983)

    Article  CAS  Google Scholar 

  3. R.F. Jordan, Adv.Organomet.Chem. 32, 325 (1991)

    Article  CAS  Google Scholar 

  4. C. Sishta, R.H. Hathorn, T.J. Marks, J. Am. Chem. Soc. 114, 1112 (1992)

    Article  CAS  Google Scholar 

  5. X. Yang, C.L. Stern, T.J. Marks, J. Am. Chem. Soc. 116, 10015 (1994)

    Article  CAS  Google Scholar 

  6. M. Bochmann, S.J. Lancaster, Angew. Chem., Int. Ed. Engl., 33, 1634 (1994)

    Article  Google Scholar 

  7. I. Tritto, M.C. Sacchi, G. Zannoni, Macromolecules 26, 7112 (1993)

    Article  Google Scholar 

  8. I. Tritto, M.C. Sacchi, S. Li, Macromol. Rapid Commun. 15, 217 (1994)

    Article  CAS  Google Scholar 

  9. I. Tritto, R. Donetti, M.C. Sacchi, P. Locatelli, G. Zannoni, Macromolecules 30, 1247(1997)

    Article  CAS  Google Scholar 

  10. K.Q. Peng, S.J. Xiao, J. Mol. Catal., 90, 201 (1994)

    Article  CAS  Google Scholar 

  11. E. Giannetti, G.M. Nicoletti, R. Mazzochi, J. Polym. Sci., Polym. Chem. Ed., 23, 2117 (1985)

    Article  CAS  Google Scholar 

  12. H. Sinn, Macromol Symp. 97, 27 (1995)

    Article  CAS  Google Scholar 

  13. I. Tritto, C. Mealares, M.C. Sacchi, P. Locatelli, Macromol. Chem. Phys. 198, 3963 (1997)

    Article  CAS  Google Scholar 

  14. S. Reddy, G. Shaashider, S. Sivaram, Macromolecules 26, 1180 (1993)

    Article  CAS  Google Scholar 

  15. B. Reiger, C. Janiak, Angew. Makromol Chem., 215, 35 (1994)

    Article  Google Scholar 

  16. M.R. Mason, J.M. Smith, S.G. Bott, A.R. Barron, J. Am. Chem. Soc. 115, 4971 (1993)

    Article  CAS  Google Scholar 

  17. D.E. Babushkin, N.V. Semikolenova, V.N. Panchenko, A.P. Sobolev, V.A. Zakharov, E.P. Talsi, Macromol. Chem. Phys. 198, 3845 (1997)

    Article  CAS  Google Scholar 

  18. E.P. Talsi, N.V. Semikolenova, V.N. Panchenko, A.P. Sobolev, D.E. Babushkin, A.A. Shubin, V.A. Zakharov, J. Mol Catal, in press

    Google Scholar 

  19. I.I. Zakharov, V.A. Zakharov, G.M. Zhidomiriv, Macromol. Theory Simul. (1999) in press

    Google Scholar 

  20. M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.W. Wong, J.B. Foresman, M.A. Robb, M. Head-Gordon, E S. Replogle, R. Gomperts, J.L. Andres, K. Raghavachari, J.S. Binkley, C. Gonzalez, L. Martin, D.J. Fox, D.J. Defrees, J. Baker, J.J.P. Stewart, J. A. Pople, Gaussian 92/DFT, Revision G.2, Gaussian, Inc., Pittsburgh PA, 1993.

    Google Scholar 

  21. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)

    Article  CAS  Google Scholar 

  22. S.J. Vosco, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Article  Google Scholar 

  23. P.H. Lewis, R.E. Rundle, J.Chem.Phys. 21, 986 (1953)

    Article  CAS  Google Scholar 

  24. M.B. Smith, J. Organomet. Chem. 70, 13 (1974)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zakharov, I.I., Zakharov, V.A., Zhidomirov, G.M. (1999). A DFT quantum-chemical study of the structures and reactive sites of polymethylalumoxane. In: Kaminsky, W. (eds) Metalorganic Catalysts for Synthesis and Polymerization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60178-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60178-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64292-0

  • Online ISBN: 978-3-642-60178-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics