Parallel Multigrid Methods for the Continuity Equations in Semiconductor Device Simulation

  • K. Gärtner
  • O. Schenk
  • W. Fichtner
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 8)


A Schur complement based algebraic multigrid method is discussed in view of the special conditions of the continuity equations for electrons and holes in semiconductors. The so called Scharfetter-Gummel discretization, the practically arbitrary large jumps in the solutions and the structure of the preconditioners impose special problems compared with standard finite element discretizations. The final goal is the application of the method to large three-dimensional problems - in other words: parallelization properties are an issue. The present techniques used in device simulation can not guarantee a close relation of the grids used and the coefficients of the equations. Hence a correction technique for the basis transformation is introduced. The algorithm is implemented on parallel Cray vector machines and on RISC SMPs. The performance for two- and three-dimensional examples is given.


Coarse Grid Multigrid Method Wall Clock Time Basis Transformation Positive Diagonal Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dagnum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Computational Science &; Engineering, 1 (1998), 46–55 (see too: Scholar
  2. 2.
    Fuhrmann, J.: Zur Verwendung von Mehrgitterverfahren bei der numerischen Behandlung elliptischer partieller Differentialgleichungen zweiter Ordnung mit variablen Koeffizienten. Dissertation, TU Chemnitz-Zwickau, 1994Google Scholar
  3. 3.
    Gajewski, H., Groger, K.: Semiconductor equations for variable mobilities based on Boltzmann Statistics or Fermi-Dirac-Statistics. Math. Nachrichten 140, 7–36 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Gajewski, H., Gärtner, K.: On the iterative solution of van Roosbroeck’s equations. ZAMM 72 (1992), 19–28zbMATHCrossRefGoogle Scholar
  5. 5.
    Hackbusch, W.: Iterative Lösung grofier schwachbesetzter linearer Gleichungssysteme. Teubner, Stuttgart, 1991Google Scholar
  6. 6.
    Jerome, J.W.: Analysis of charge transport a mathematical study of semiconductor devices. Berlin, Springer, 1996Google Scholar
  7. 7.
    Reusken, A.: Fourier analysis of a robust multigrid method for convectiondiffusion equations. Numerische Mathematik, 71 (1995), 365–398MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ruge, J.W., Stüben, K.: Algebraic multigrid. In eds. S. McCormick, Multigrid methods, SLAM, Philadelphia, 1987, 73–130Google Scholar
  9. 9.
    Schenk, O., Gärtner, K., Fichtner, W.: Parallel Sparse LU Factorization in a Shared Memory Computing Environment Integrated Systems Laboratory. ETH Zurich, Technical report No. 98/8Google Scholar
  10. 10.
    Varga, R.S.: Matrix iterative analysis. Prentic-Hall, Englewood Cliffs, N. J., 1962Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • K. Gärtner
    • 1
  • O. Schenk
    • 2
  • W. Fichtner
    • 2
  1. 1.Weierstraß Institute for Applied Analysis and StochasticsBerlinGermany
  2. 2.Integrated Systems Lab.Swiss Federal Institute of Technology ZurichZurichSwitzerland

Personalised recommendations