Advertisement

Advanced Models, Applications, and Software Systems for High Performance Computing — Application in Microelectronics

  • E. Langer
  • S. Selberherr
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 8)

Abstract

This contribution deals with the Austrian research project AURORA and the application of high performance computing (HPC) in the field of microelectronics. In the first part the ‘Spezialforschungsbereich’ AURORA - Advanced Models, Applications, and Software Systems for High Performance Computing - is presented which is funded by the Austrian ‘Fonds zur Forderung der wissenschaftlichen Forschung’. Seven research groups belonging to different institutes of the ‘Universitat Wien’ and the ‘Technische Universitat Wien’ are participating in AURORA, thus covering the fields computer science, statistics and operations research, numerical mathematics, electrochemistry, and microelectronics. The second part deals with the activities concerning the application of HPC to the simulation of the behaviour of microelectronic devices and their technological process steps in order to intensify the research capabilities of the simulation tools.

Keywords

High Performance Computing System Load Queue Manager Semiconductor Process Linearize Augmented Plane Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zima, H.P., Brezany, P., Chapman, B.M.: SUPERB and Vienna Fortran. Parallel Computing 20 (1994) 1487–1517CrossRefGoogle Scholar
  2. 2.
    Fahringer T.: Estimating and Optimizing Performance for Parallel Programs. IEEE Computer 28(11) (1995) 47–56Google Scholar
  3. 3.
    Chapman, B.M., Pantano, M., Zima, H.P.: Supercompilers for Massively Parallel Architectures. Proc. Aizu Inter. Symposium on Parallel Algorithms/Architecture Synthesis (1995) 315-322Google Scholar
  4. 4.
    Uberhuber, C.W.: Computer-Numerik I. Springer-Verlag, Berlin Heidelberg New York Tokyo (1995)CrossRefGoogle Scholar
  5. 5.
    Pflug, G.Ch.: Optimization of Stochastic Models. Kluwer Academic Group, Boston (1996)MATHGoogle Scholar
  6. 6.
    Zenios S.A.: Massively Parallel Computations for Financial Modeling Under Uncertainty. Mesirov, J. (ed.), Very Large Scale Computing in the 21st Century. SIAM (1991) 273-294Google Scholar
  7. 7.
    Schwarz, K.: Quantum Mechanical Calculations Based on Density Functional Theory. Phase Transitions 52 (1994) 109–122CrossRefGoogle Scholar
  8. 8.
    Langer, E., Selberherr, S.: Prozefisimulation: Stand der Technik. In: Festkorperprobleme/Advances in Solid State Physics 36, Vieweg (1996) 203-243Google Scholar
  9. 9.
    Kosina, H., Langer, E., Selberherr, S.: Device Modeling for the 1990s. Microelectronics Journal 26 (1995) 217–233CrossRefGoogle Scholar
  10. 10.
    Fischer, C, Habas, P., Heinreichsberger, O., Kosina, H., Lindorfer, Ph., Pichler, P., Potzl, H., Sala, C., Schiitz, A., Selberherr, S., Stiftinger, M.,Thurner, M.: MINIMOS 6 User’s Guide, Institut fur Mikroelektronik, Technische Universitat Wien, Austria (1994)Google Scholar
  11. 11.
    Halama, S., Fasching, F., Fischer, C., Kosina, H., Leitner, E., Pichler, C., Pimingstorfer, H., Puchner, H., Rieger, G., Schrom, G., Simlinger, T., Stiftinger, M., Stippel, H., Strasser, E., Tuppa, W., Wimmer, K., Selberherr, S.: The Viennese Integrated System for Technology CAD Applications. In: Technology CAD Systems (Fasching, F., Halama, S., Selberherr, S., eds.), Springer (1993) 197-236Google Scholar
  12. 12.
    Bohmayr, W., Burenkov, A., Lorenz, J., Ryssel, H., Selberherr, S.: Statistical Accuracy and CPU Time Characteristic of Three Trajectory Split Methods for Monte Carlo Simulation of Ion Implantation. In: Simulation of Semiconductor Devices and Processes - SISDEP 6 (1995) 492-495Google Scholar
  13. 13.
    Kirchauer, H., Selberherr, S.: Three-Dimensional Photolithography Simulation. IEEE Trans. Semiconductor Technology Modeling and Simulation 6 (1997) http://www.ieee.org/journal/1cad/accepted/kirchauer-j un97/Google Scholar
  14. 14.
    Dill, F.H.: Optical Lithography. IEEE Trans. Electron Devices ED-22(7) (1975) 440–444CrossRefGoogle Scholar
  15. 15.
    Bernard, D.A.: Simulation of Focus Effects in Photolithography. IEEE Trans. Semiconductor Manufacturing 1(3) (1988) 85–97MathSciNetCrossRefGoogle Scholar
  16. 16.
    Stockinger, M., Strasser, R., Plasun, R., Wild, A., Selberherr, S.: A Qualitative Study on Optimized MOSFET Doping Profiles. Proc. SISPAD’98 - Inter. Conf. on Simulation of Semiconductor Processes and Devices (to appear)Google Scholar
  17. 17.
    Pichler, C., Plasun, R., Strasser, R., Selberherr, S.: High-Level TCAD Task Representation and Automation. IEEE Trans. Semiconductor Technology Modeling and Simulation 5 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • E. Langer
    • 1
  • S. Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTechnische Universität WienWienAustria

Personalised recommendations