CrysVUN++, a Powerful Computer Code for Global Thermal Modelling of Industrial Crystal Growth Processes

  • M. Kurz
  • A. Pusztai
  • G. Müller
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 8)


The program package CrysVUN++ is introduced. It is designed for the needs of crystal growers to have an efficient computer code for the simulation of the growth processes and equipment. Heat transfer by nonlinear anisotropic conduction and radiation as well as the analysis of thermoelastic stress are calculated for axisymmetric geometries. The problem of heater control is treated in an integrated software module. The use of CrysVUN++ is supported by an easy to handle graphical interface.


Unstructured Grid View Factor Thermoelastic Stress Finite Volume Technique Buoyancy Drive Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dupret, F., Nicodème, P., Ryckmans, Y., Wouters, P., Crochet, M.J.: Global modelling of heat transfer in crystal growth furnaces. Int. J. Heat Mass Transfer; Vol. 33, No. 9, pp. 849–1871, 1990CrossRefGoogle Scholar
  2. 2.
    Heller, D., Ferguson, P. M.: Motif Programming Manual. O’Reilly and Associates, Inc.Google Scholar
  3. 3.
    Lambropoulos, J.D.: The isotropic assumption during Czochralski growth of single semiconductors crystals. Journal of Crystal Growth 84 (1987) 349–358CrossRefGoogle Scholar
  4. 4.
    Kurz, M., Pusztai, A.: Presentation of a gentle discretization scheme for the numerical treatment of nonlinear heat conduction on unstructured grids in finite volume technique. Int. J. Num. Methods for Heat & Fluid Flow, Vol. 8, No. 3, p. 304Google Scholar
  5. 5.
    Angermann, L.: An Introduction to finite volume methods for linear elliptic equations of second order. Report of the Institute for Applied Mathematics No. 164, 1995, Friedrich-Alexander-Unversitat, Erlangen-Nürnberg, GermanyGoogle Scholar
  6. 6.
    Dongarra, J., Lumsdaine, A., Niu, X., Pozo, R., Remington, K.: A Sparse Matrix Library in C++ for High Performance Architectures, Scholar
  7. 7.
    Eichenseher, I.: Objektorientierte Triangulierung von zweidimensionalen Gebieten. Report of the Institute for Applied Mathematics, 3. June 1996 TU-München, GermanyGoogle Scholar
  8. 8.
    Arfken, G.: Mathematical Methods for Physicists. Academic Press, Inc.Google Scholar
  9. 9.
    Böttcher, K., Rudolph, P., Neubert, M., Kurz, M., Pusztai, A., Müller, G.: Global Temperature Field Simulation of the Vapour Pressure Controlled Czochralski (VCZ) Growth of 3-4 Inch Gallium Arsenide Crystals. Accepted paper ICCG12 conference in Israel July 1998, abstract 193Google Scholar
  10. 10.
    Amon, J., Berwian, P., Müller, G.: Computer Assisted Growth of Low EPD GaAs with 3″ Diameter by the Vertical Gradient Freeze Method. Accepted paper ICCG12 conference in Israel July 1998Google Scholar
  11. 11.
    Berwian, P.: Optimierung der thermischen Randbedingungen bei der Kristallzüchtung von 3″-GaAs nach dem VGF-Verfahren mit Hilfe der numerischen Prozefimodellierung. Diplomarbeit, Institut für Werkstoffwissenschaften (LS VI), Friedrich-Alexander Universitat, März 1996 (partially published in [10])Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • M. Kurz
    • 1
  • A. Pusztai
    • 1
  • G. Müller
    • 1
  1. 1.Institute for Material Science (WW VI)University of Erlangen-NürnbergErlangenGermany

Personalised recommendations