Advertisement

Advanced Extrapolation Methods for Large Scale Differential Algebraic Problems

  • R. Ehrig
  • U. Nowak
  • L. Oeverdieck
  • P. Deuflhard
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 8)

Abstract

We present new algorithmic methods, highly efficient sequential and scalable parallel implementations of extrapolation algorithms and demonstrate their value for challenging problems of chemical engineering.

Keywords

Domain Decomposition Aerosol Formation Inexact Newton Method Extrapolation Algorithm Workstation Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbenz, P., Gander, W.: A Survey of Direct Parallel Algorithms for Banded Linear Systems. Technical Report TR 221, Institute for Scientific Computing, ETH Zürich (1994)Google Scholar
  2. 2.
    Bornemann, F.A.: Adaptive multilevel discretization in time and space for parabolic partial differential equations. Technical Report TR 89-7, Konrad-Zuse-Zentrum für Informationstechnik Berlin (1989)Google Scholar
  3. 3.
    Brakkee, E., Vuik, K., Wesseling, P.: Domain decomposition for the incompressible Navier-Stokes equations: solving subdomain problems accurately and inaccurately. Report 95-37, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft (1995)Google Scholar
  4. 4.
    Brown, P., Hindmarsh, A., Petzold, L.: Consistent initial condition calculation for differential-algebraic systems. SIAM J. Sci. Comput., to appearGoogle Scholar
  5. 5.
    da Cunha, R.D., Hopkins, T.: A parallel implementation of the restarted GMRES iterative algorithm for nonsymmetric systems of linear equations. Adv. Comp. Math. 2 (1994) 261–277zbMATHCrossRefGoogle Scholar
  6. 6.
    Deuflhard, P.: Recent Results in Extrapolation Methods for ODEs. SIAM Review, 27 (1985) 505–535MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Deuflhard, P., Lang, J., Nowak, U.: Adaptive Algorithms in Dynamical Process Simulation. 8th Conference of the European Consortium for Mathematics in Industry, Kaiserslautern 1994Google Scholar
  8. 8.
    Dubois, P.F., Greenbaum, A., Rodrigue, G.H.: Approximating the inverse of a matrix for use in iterative algorithms on vector processors. Computing 22 (1979) 257–268MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ehrig, R., Nowak, U., Deuflhard, P.: Massively Parallel Linearly-Implicit Extrapolation Algorithms as a Powerful Tool in Process Simulation, Advances in Parallel Computing, to appearGoogle Scholar
  10. 10.
    Nowak, U.: A Fully Adaptive MOL-Treatment of Parabolic ID-Problems with Extrapolation Techniques. Appl. Num. Math. 20 (1996) 129–145zbMATHCrossRefGoogle Scholar
  11. 11.
    Saad, Y.: ILUT: a dual threshold incomplete ILU factorization. Num. Lin. Alg. Appl. 1 (1994) 387–402MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Schaber, K.: Aerosol Formation in Absorption Processes. Chem. Engng. Sci. 50 (1995) 1347–1360CrossRefGoogle Scholar
  13. 13.
    Schaber, K., Körber, J.: Formation of Aerosols in Absorption Processes for Exhaust Gas Purification. J. Aerosol. Sci. 22 (1991) S501–S504CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • R. Ehrig
    • 1
  • U. Nowak
    • 1
  • L. Oeverdieck
    • 1
  • P. Deuflhard
    • 1
  1. 1.Konrad-Zuse-Zentrum für Informationstechnik BerlinBerlinGermany

Personalised recommendations