Numerical Simulation of Vibrations for the Design of a Rear Axle

  • D. Tscharnuter
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 8)


The construction and design of the axles of a new vehicle is one of the most important parts in developing a car. Lightweight structures are used in order to reduce the weight of cars. This can be reached using new materials that are often more flexible, e.g., using aluminium instead of steel. So the conventional rigid multibody models seem to be no more sufficient for the accurate modeling of all physical properties, in particular the vibrations. Therefore, we investigate a multibody model of a rear axle, which contains an elastic subframe. In order to reduce the degrees of freedom of the finite element model, the dynamic behavior is approximated by the modal Ritz ansatz. This approach is a good approximation of the deformation of the subframe, because the deformations are small. In the software package ADAMS that can be used for solving multibody systems the Craig-Bampton method is used for this approach. We focus our investigations on the lateral vibrations of the rear axle. Numerical results for a rigid and an elastic multibody formulation are presented and discussed.


Mode Shape Test Bench Multibody System Rear Axle Connection Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bathe, K.-J.: Finite-Elemente-Methoden. Springer, 1990Google Scholar
  2. 2.
    Bremer, H., Pfeiffer, F.: Elastische Mehrkörpersysteme. Teubner 1992Google Scholar
  3. 3.
    Craig, R.R., Bampton, M.C.C.: Coupling of Substructures for Dynamic Analyses. AIAA Journal 6(7), 1968, 1313–1319zbMATHCrossRefGoogle Scholar
  4. 4.
    Dietz, S., Knothe, K.: Reduktion der Anzahl der Freiheitsgrade in Finite-Element-Substrukturen. ILR-Mitteilung 315, 1997Google Scholar
  5. 5.
    Führer, C.: Differential-algebraische-Gleichungssysteme in mechanischen Mehrkörpersystemen - Theorie, numerische Ansätze und Anwendungen. Dissertationsschrift, Mathematisches Institut, Technische Universität München, 1988Google Scholar
  6. 6.
    Haug., E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Volume I: Basic Methods. Allyn and Bacon, 1989Google Scholar
  7. 7.
    Knothe, K., Wessels, H.: Finite Elemente. Springer, 1992Google Scholar
  8. 8.
    Landau, L.D., Lifschitz, E.M.: Elastizitätstheorie. Akademie Verlag, 1991Google Scholar
  9. 9.
    Mechanical Dynamics Inc. ADAMS Product Line Update Version 8.2, 1995Google Scholar
  10. 10.
    Mechanical Dynamics Inc. Flexible Bodies and ADAMS, 1996Google Scholar
  11. 11.
    Orlandea, N.: ADAMS (theory and applications). Vehicle System Dynamics 16, 1987, 121–166CrossRefGoogle Scholar
  12. 12.
    Pisino, E., Campanile, P.: Multibody implementation of flexible structures from FEM. EUCAR, I.T.I.A. International Project INVEC Task 1.1, 1997, Final report (Annex B)Google Scholar
  13. 13.
    Sachau, D.: Berücksichtigung von flexiblen Korpern und Fügestellen in Mehrkorpersystemen zur Simulation aktiver Raumfahrtstrukturen. Dissertationsschrift, Institut A für Mechanik, Universität Stuttgart, 1996Google Scholar
  14. 14.
    Schiehlen, W.: Multibody System Handbook. Springer, 1990Google Scholar
  15. 15.
    Schwarz, H.R.: Methode der finiten Elemente. B.G. Teubner Stuttgart, 1991Google Scholar
  16. 16.
    Simeon, B.: MBSPACK - numerical integration software for constrained mechanical motion. Surv. Math. Ind. 5, 1995, 169–202MathSciNetzbMATHGoogle Scholar
  17. 17.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer 1993Google Scholar
  18. 18.
    The MacNeal-Schwendler Corporation: MSC/NASTRAN: Component Mode Synthesis for External Superelements. Los Angeles, CA, 1986Google Scholar
  19. 19.
    Tscharnuter, D.: Study of a rear axle with rigid multibody formulation versus elastic multibody formulation. EUCAR, I.T.I.A. International Project INVEC Task 1.5, 1998Google Scholar
  20. 20.
    Tscharnuter, D., Stryk, O. v., Bulirsch, R.: Zur Problematik der Antriebsstrangsimulation mit den Programmpaketen ADAMS, DADS und SIMPACK. Lehrstuhl für Höhere Mathematik und Numerische Mathematik, TU München, 1996, Report for BMW AGGoogle Scholar
  21. 21.
    Ziegler, F.: Mechanics of solids and fluids. Springer, 2nd edition, 1995Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • D. Tscharnuter
    • 1
    • 2
  1. 1.Lehrstuhl für Hühere Mathematik und Numerische Mathematik - FORTWIHR, Zentrum MathematikTU MünchenMünchenGermany
  2. 2.Abt. EB-21BMW AGMünchenGermany

Personalised recommendations