Mechanical Multibody Systems with Deformable Components

  • P. Rentrop
  • O. Scherf
  • B. Simeon
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 8)


The multibody system approach provides enhanced models of vehicles, robots, and air- and spacecrafts. Mixed systems consisting of both rigid and deformable bodies are aimed at growing demands for refined simulation. A basic modeling framework for this class of mechanical systems is presented which covers also inelastic material behavior. Moreover, the Differential-Algebraic Equations (DAEs) obtained from semidiscretization in space are classified and the application of DAE solvers is discussed. Two examples illustrate the simulation tasks and show the state-of-the-art in this field of scientific computing.


Elastic Body Multibody System Deformable Body Quadrature Point Multi Body System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Betten, J.: Elastizitäts- und Plastizitätslehre. Vieweg 1986Google Scholar
  2. 2.
    Campbell, S.L., Marszalek, W.: The index of an infinite dimensional implicit system. Report, NCSU Univ., 1996, to appear in Math. Modelling of SystemsGoogle Scholar
  3. 3.
    Chan, K., Bodner, S., Lindholm, U.: Phenomenological Modeling of Hardening and Thermal Recovery in Metals. J. of Eng. Materials Tech. 110 (1988)Google Scholar
  4. 4.
    Ciarlet, P.G.: Mathematical Elasticity I. North Holland 1988Google Scholar
  5. 5.
    Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. Teubner 1998Google Scholar
  6. 6.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. 2nd. Ed., Springer 1996Google Scholar
  7. 7.
    Hughes, T.J.: The Finite Element Method. Prentice Hall 1987.Google Scholar
  8. 8.
    Jahnke, M., Popp, K., Dirr, B.: Approximate analysis of flexible parts in multibody systems using the finite element method. In Schiehlen W.(Ed.): Advanced Multibody System Dynamics, Kluwer Academic Publishers 1993, pp. 237-256Google Scholar
  9. 9.
    Kikuchi, N., Oden, J.: Conctact Problems in Elasticity. SLAM: Philadelphia 1988Google Scholar
  10. 10.
    Lubich, C.: Integration of stiff mechanical systems by Runge-Kutta methods. ZAMP 44, 1022–1053 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Nordmark, A.: The Matlab PDE Toolbox. The Mathworks Inc., 1995Google Scholar
  12. 12.
    Rheinboldt, W.C., Simeon, B.: On computing smooth solutions of DAEs for elastic multibody systems. Submitted to Comp.Appl.Math.Google Scholar
  13. 13.
    Roberson, R., Schwertassek, R.: Dynamics of Multibody Systems. Springer 1988Google Scholar
  14. 14.
    Schiehlen, W.O. (Ed.): Multibody System Handbook. Springer 1990Google Scholar
  15. 15.
    Simeon, B.: MBSPACK - Numerical integration software for constrained mechanical motion. Surv. on Math, in Ind. 5, 169–202 (1995)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Simeon, B.: Modelling a flexible slider crank mechanism by a mixed system of DAEs and PDEs. Math. Modelling of Systems 2, 1–18 (1996)zbMATHCrossRefGoogle Scholar
  17. 17.
    Seibert, T.: Simulationstechniken zur Untersuchung der Streuung bei der Parameteridentifikation inelastischer Werkstoffmodelle, Diss., TU Darmstadt 1996Google Scholar
  18. 18.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer 1993Google Scholar
  19. 19.
    Wallrapp, O.: Standardization of flexible body modelling in MBS codes. Mech. Struct. Mach. 22, 283–304 (1994)CrossRefGoogle Scholar
  20. 20.
    Washizu, K.: Variational Methods in Elasticity and Plasticity. Pergamon 1982Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • P. Rentrop
    • 1
  • O. Scherf
    • 1
  • B. Simeon
    • 1
  1. 1.FB MathematikTU DarmstadtDarmstadtGermany

Personalised recommendations