Skip to main content

Oceanographic Causes for Transarctic Ice Transport of River Discharge

  • Chapter
Land-Ocean Systems in the Siberian Arctic

Abstract

The influence of river discharge on ice-hydrological conditions was investigated during expeditions in the Laptev Sea in 1994, 1995 and 1996 during different seasons of the year within the framework of the Russian-German project “Laptev Sea System73”. A combined analysis of both ice satellite and CTD observations has shown that the formation and distribution of the fast ice edge is dependent on vertical heat exchange processes with the warm subsurface water layer underlying river water over a depth range of 10 to 25 m. It is formed during the summertime in areas affected by river discharge, which spreads as a result of warm surface water converging at the discharge fronts. Calculations show that advection of heat and double-diffusive convection are the most efficient modes of heat transport to the growing ice at the periphery of the freshened zone. Their values are sufficient to reduce the ice thickness at the periphery of the discharge zone by more than half. This leads to a fast ice edge much further south than the northern limit of the freshened zone. As a result, a considerable amount of riverine dissolved and suspended matter is incorporated into drifting ice and hence into transarctic ice transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Dethleff, D., D. Nürnberg, E. Reimnitz, M. Saarso and Y.P. Savchenko (1993) East Siberian Arctic Region Expedition,92: The Laptev Sea ¯ Its Significance for Arctic Sea ice Formation and Transpolar Sediment Flux. Ber. Polarforsch., 120, 1–44.

    Google Scholar 

  • Dmitrenko, I. and TRANSDRIFT Shipboard Scientific Party (1995) The Distribution of River Run-Off in the Laptev Sea: The Environmental effect. In: Russian-German Cooperation: Laptev Sea System, Kassens, H., D. Piepenburg, J. Thiede, L. Timokhov, H.-W. Hubberten and S. Priamikov (eds.), Ber. Polarforsch. 176, 114–120.

    Google Scholar 

  • Dmitrenko, I, J. Dehn, P. Golovin, H. Kassens and A. Zatsepin (in press) Influence of sea ice on under-ice mixing under stratified conditions: potential impacts on particle distribution. Estuarine, Coastal and Shelf Science, 46.

    Google Scholar 

  • Doronin, Y.P. and D.E. Kheisin (1975) Sea Ice (in Russian). Gidrometeoizdat, Leningrad, 317 pp.

    Google Scholar 

  • Eicken H., E. Reimnitz, V. Alexandrov, T. Martin, H. Kassens and T. Viehoff (1997) Sea-ice processes in the Laptev Sea and their importance for sediment export, Continental Shelf Research, 17, 205–233.

    Article  Google Scholar 

  • Golovin, P.N., V.A. Gribanov and I.A. Dmitrenko (1995) Macro- and Mesoscale Hydrophisical Structure of the Outflow Zone of the Lena River Water to the Laptev Sea. In: Russian-German Cooperation: Laptev Sea System, Kassens, H., D. Piepenburg, J. Thiede, L. Timokhov, H.-W. Hubberten and S. Priamikov (eds.), Ber. Polarforsch. 176, 99–106.

    Google Scholar 

  • Fedorov, K.N. (1976) Fine Thermohaline Structure of the Oceanic Waters (in Russian). Leningrad, Gidrometeoizdat, 184 pp.

    Google Scholar 

  • Fedorov, K.N. (1991) About Thermohaline Characterisrics of Oceanic Fronts (in Russian). In: K.N. Fedorov. Izbrannye Trudy po Fizicheskoi Okeanologii, Gidrometeoizdat, Leningrad, 106–111.

    Google Scholar 

  • Fofonoff, N.P. and R.C.Jr. Millard (1983) Algorithms for computation of fundamental properties of seawater. Unesco technical paper in marine science, 44, 53 pp.

    Google Scholar 

  • Foster, T. D. (1974) Thi hierarchy of convection. In: Processus de formation des eaux oceaniques profondes en particulier en Mediterranee Occidentale, Colloques Intern., du CNRS, Paris, 215, 237.

    Google Scholar 

  • Huppert, H.E. (1971) On the stability of double-diffusive layers. Deep-Sea Res., 18, 10, 1005–1022.

    Google Scholar 

  • Kassens, H. & I. Dmitrenko (1995) The TRANSDRIFT II Expedition to the Laptev Sea. In: Laptev Sea System: Expeditions in 1994, Kassens H. (ed.), Ber. Polarforsch. 182, 1–180.

    Google Scholar 

  • Kassens, H., V. Karpiy (eds.) and the Shipboard Scientific Party (1994) Russian-German Cooperation: The TRANSDRIFT I Expedition to the Laptev Sea, Ber. Polarforsch. 151, 168 pp.

    Google Scholar 

  • Kassens, H., I. Dmitrenko, L. Timokhov and J. Thiede (1997) The TRANSDRIFT III Expedition: Freeze-up Studies in the Laptev Sea. In: Laptev Sea System: Expeditions in 1995, Kassens H. (ed.), Ber. Polarforsch. 248, 1–192.

    Google Scholar 

  • Krylov, A.D. and A.G. Zatsepin (1992) Frazil ice formation due to difference in heat and salt exchange across a density interfase. J. Marine Systems, 3, 497–506.

    Article  Google Scholar 

  • Kuz, mina, N.P. (1980) About Oceanic Frontogenesis (in Russian). Izv. Akad.Nauk SSSR, Fizika atmosfery i okeana, 16, 10, 1082–1090.

    Google Scholar 

  • Mac Vean, M.K. and J.D. Woods (1980) Redestribution of scalars during upper ocean frontogenesis. Quart. J. Roy. Met. Soc., 106, 448, 293–311.

    Article  Google Scholar 

  • Narimousa, S., R.R. Long and S.A. Kitaigorodskii (1986) Entrainment due to turbulent shear flow at the interface of a stably stratified fluid. Tellus, 38A, 1, 76–87.

    Article  Google Scholar 

  • Neshyba, S., V.T. Neal and W.W. Denner (1971) Temperature and conductivity measurements under Ice Island T-3. J. Geophys. Res., 76, 33, 8107–8119.

    Article  Google Scholar 

  • Oceanographic Tables (in Russian) (1975) Gidrometeoizdat, Leningrad, 476 pp.

    Google Scholar 

  • Turner, J.S. (1965) The coupled turbulent transport of salt and heat across a sharp density interfase. Int. J. Heat and Mass Transfer, 8, 5, 759–767.

    Article  Google Scholar 

  • Turner, J.S. (1973) Bouyancy effects in fluids. Cambridge Univ. Press, 367 pp.

    Google Scholar 

  • Woods, J.D. (1980) The generation of thermohaline finestructure at fronts in the ocean. Ocean modelling, 32, 1–4.

    Google Scholar 

  • Zakharov, V.F. (1966) The Role of Trans-Fast Ice Polynyas in Hydrological Regime of the Laptev Sea (in Russian). Okeanologiya, Moscow, 6, 6, 1014–1022.

    Google Scholar 

  • Zubov, N.N. (1963) Arctic Ice. U.S. Naval Oceanographic Office and Amer. Meteor. Soc., 491 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dmitrenko, I., Golovin, P., Gribanov, V., Kassens, H. (1999). Oceanographic Causes for Transarctic Ice Transport of River Discharge. In: Kassens, H., et al. Land-Ocean Systems in the Siberian Arctic. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60134-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60134-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64270-8

  • Online ISBN: 978-3-642-60134-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics