Advertisement

Biomaterials - Experimental Aspects

  • U. Klinge
  • B. Klosterhalfen

Abstract

The abdominal wall is mainly strengthened in two ways [1]:
  • By a mechanical block, e.g. as sublay or even onlay, at least as long as the fixation works (problem of implantation technique)

  • By induction of scar tissue, e.g. by polyester or polypropylene, not by polytetrafluoroethylene (PTFE) (problem of tissue response)

Keywords

Abdominal Wall Hernia Repair Ventral Hernia Polypropylene Mesh Suture Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klinge U, Prescher A, Klosterhalfen B, Schumpelick V. [Development and pathophysiology of abdominal wall defects]. Chirurg 1997;68(4):293–303.PubMedCrossRefGoogle Scholar
  2. 2.
    Amid P. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1997;1:5–8.CrossRefGoogle Scholar
  3. 3.
    Schumpelick V, Arlt G, Schlachetzki A, Klosterhalfen B. Chronic inguinal pain following TAPP. A case of mesh shrinkage. Chirurg 1997;68:1297–1300.Google Scholar
  4. 4.
    Silich RC, McSherry CK. Spermatic granuloma. An uncommon complication of the tension-free hernia repair. Surg Endosc 1996;10(5):537–9.Google Scholar
  5. 5.
    Kunath U, Lambert H. [Laparoscopic hernioplasty]. Chirurg 1995;66(4):404–8.PubMedGoogle Scholar
  6. 6.
    Felix EL, Michas CA, Gonzalez MH, Jr. Laparoscopic hernioplasty: why does it work? Surg-Endosc 1997;11(1):36–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Witzel O. Über den Verschluß von Bauchwunden und Bruchpforten durch versenkte Silberdrahtnetze (Einheilung von Filigranpelotten). Zbl Chirurgie 1900;10:257–60.Google Scholar
  8. 8.
    Klinge U, Conze J, Limberg W, Brucker C, Ottinger AP, Schumpelick V. [Pathophysiology of the abdominal wall]. Chirurg 1996;67(3):229–33.PubMedGoogle Scholar
  9. 9.
    Klinge U, Klosterhalfen B, Conze J, et al. A modified mesh for hernia repair adapted to abdominal wall physiology. Eur J Surg 1998;in press.Google Scholar
  10. 10.
    Nilsson t. Biomechanical studies of rabbit abdominal wall. Part I the mechanical properties of specimens from different anatomical positions. J Biomech 1982;15,2:123.9.Google Scholar
  11. 11.
    Neugebauer R, D Wolter, L Claes, B Biiltmann. Die Bauchdeckenersatzplastik durch ein unbeschichtetes Kohlenstoffgewebe. Langenbecks Arch Chir 1979;350:83–93.Google Scholar
  12. 12.
    Bellon JM, Bujan J, Contreras LA, Carreras San Martin A, Hernando A, Jurado F. Improvement of the tissue integration of a new modified polytetrafluoroethylene prosthesis: Mycro Mesh. Biomaterials 1996;17(13):1265–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Meddings RN, Carachi R, Gorham S, French DA. A new bioprosthesis in large abdominal wall defects. J Pediatr Surg 1993;28(5):660–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Klinge U, Conze J, Klosterhalfen B, et al. [Changes in abdominal wall mechanics after mesh implantation. Experimental changes in mesh stability]. Langenbecks Arch Chir 1996;381(6):323–332.PubMedCrossRefGoogle Scholar
  15. 15.
    Bellon JM, Contreras LA, Bujan J, Carrea San Martin A. Experimental assay of a Dual Mesh polytetrafluoroethylene prosthesis (non-porous on one side) in the repair of abdominal wall defects. Biomaterials 1996; 17(24):2367–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Arnaud JP, Eloy R, Adloff M, Grenier JF. In vivo exploration of the tensile strength of the abdominal wall after repair with different prosthetic materials. Experimental study in the rat. Eur Surg Res 1979;11(1):1–7.Google Scholar
  17. 17.
    Arnaud JP, Eloy R, Adloff M, Grenier JF. Critical evaluation of prosthetic materials in repair of abdominal wall hernias: new criteria of tolerance and resistance. Am J Surg 1977;133(3):338–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Jenkins S, Klamer T, Parteka J, Condon R. A comparison of prosthetic materials used to repair abdominal wall defects. Surgery 1983;94,2:392–8.PubMedGoogle Scholar
  19. 19.
    Greenstein SM, Murphy TF, Rush BF, Jr., Alexander H. Evaluation of polylactic acid-carbon mesh for repair of ventral herniorrhaphy. Am J Surg 1986;151(5):635–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Cerise EJ, Busuttil RW, Craighead CC, Ogden WWD. The use of Mersilene mesh in repair of abdominal wall hernias: a clinical and experimental study. Ann Surg 1975;181(5):728–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Myers B, M Rightor, W Donovan. Inguinal hernia repair. Arch Surg 1981;116:463–5.Google Scholar
  22. 22.
    Marmon L, CD Vinocour, SB Standiford, CW Wagner, JM Dunn, WH Weintraub. Evaluation of absorbable polyglycolic acid mesh as a wound support. J Ped Surg 1985;20,6:737–42.CrossRefGoogle Scholar
  23. 23.
    Kingsnorth A, J Slavin. Peptide growth factors in wound healing. Br J Surg 1991;78:1286–90.Google Scholar
  24. 24.
    Delany HM. Intraperitoneal mesh-a word of caution [editorial; comment]. Surg Endosc 1994; 8(4):287–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Pans A, Pierard GE. A comparison of intraperitoneal prostheses for the repair of abdominal muscular wall defects in rats. Eur Surg Res 1992;24(l):54–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Bleichrodt RP, Simmermacher RK, van der Lei B, Schakenraad JM. Expanded polytetrafluoroethylene patch versus polypropylene mesh for the repair of contaminated defects of the abdominal wall. Surg Gynecol Obstet 1993;176(l):18–24.PubMedGoogle Scholar
  27. 27.
    Simmermacher RK, Schakenraad JM, Bleichrodt RP. Reherniation after repair of the abdominal wall with expanded polytetrafluoroethylene. J Am Coll Surg 1994;178(6):613–6.PubMedGoogle Scholar
  28. 28.
    Christoforoni PM, Kim YB, Preys Z, Lay RY, Montz FJ. Adhesion formation after incisional hernia repair: a randomized porcine trial. Am Surg 1996;62(ll):935–8.PubMedGoogle Scholar
  29. 29.
    Eller R, Bukhari R, Poulos E, Mclntire D, Jenevein E. Intraperitoneal adhesions in laparoscopic and standard open herniorrhaphy. An experimental study. Surg Endosc 1997;ll(l):24–8.Google Scholar
  30. 30.
    Schlechter B, Marks J, Shillingstad RB, Ponsky JL. Intraabdominal mesh prosthesis in a canine model [see comments]. Surg Endosc 1994;8(2):127–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Bothra R. Late onset small bowel fistula due to tantalum mesh. Am J Surg 1973;125(5):649–50.PubMedCrossRefGoogle Scholar
  32. 32.
    DeGuzman LJ, Nyhus LM, Yared G, Schlesinger PK. Colocutaneous fistula formation following polypropylene mesh placement for repair of a ventral hernia: diagnosis by colonoscopy. Endoscopy 1995;27(6):459–61.CrossRefGoogle Scholar
  33. 33.
    Kaufman Z, Engelberg M, Zager M. Fecal fistula: a late complication of Marlex mesh repair. Dis Colon Rectum 1981;24(7):543–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Soler M, Verhaeghe P, Essomba A, Sevestre H, Stoppa R. [Treatment of postoperative incisional hernias by a composite prosthesis (polyester-polyglactin 910). Clinical and experimental study]. Ann Chir 1993;47(7):598–608.PubMedGoogle Scholar
  35. 35.
    Greene MA, Mullins RJ, Malangoni MA, Feliciano PD, Richardson JD, Polk HC, Jr. Laparotomy wound closure with absorbable polyglycolic acid mesh. Surg Gynecol Obstet 1993; 176(3):213–8.PubMedGoogle Scholar
  36. 36.
    Dayton MT, Buchele BA, Shirazi SS, Hunt LB. Use of an absorbable mesh to repair contaminated abdominal-wall defects. Arch Surg 1986;121(8):954–60.PubMedGoogle Scholar
  37. 37.
    Dion YM, Laplante R, Charara J, Marois M. The influence of the number of endoclips and of mesh incorporation on the strength of an experimental hernia patch repair. Surg Endosc 1994;8(11): 1324–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Fansler RF, Taheri P, Cullinane C, Sabates B, Flint LM. Polypropylene mesh closure of the complicated abdominal wound. Am J Surg 1995;170(1): 15–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Jones JW, Jurkovich GJ. Polypropylene mesh closure of infected abdominal wounds. Am Surg 1989;55(l):73–6.PubMedGoogle Scholar
  40. 40.
    Voyles CR, Richardson JD, Bland KI, Tobin GR, Flint LM, Polk HC, Jr. Emergency abdominal wall reconstruction with polypropylene mesh: short-term benefits versus long-term complications. Ann Surg 1981;194(2):219–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Nagy KK, Fildes J J, Mahr C, et al. Experience with three prosthetic materials in temporary abdominal wall closure. Am Surg 1996;62(5):331–5.Google Scholar
  42. 42.
    Zachariou Z, R Daum. Gewebereaktivitat prostethischer Materialien bei der Rekonstruktion von Defekten in der Chirurgie. Ein Vergleich zwischen Gore-Tex, Vicryl-Netz und Dura im Rattenmodell. Langenbecks Arch Chir 1995;Suppl 11:1337–44.Google Scholar
  43. 43.
    Treutner K, G Winkeltau, MM Lerch, R Stadel, V Schumpelick. Postoperative intraabdominelle Adhäsionen—ein neues standardisiertes und objektiviertes Tiermodell und Testung von Substanzen zur Adhasionsprophylaxe. Langenbecks Arch Chir 1989;374,2:99–104.PubMedCrossRefGoogle Scholar
  44. 44.
    Amid PK, Shulman AG, Lichtenstein IL, Sostrin S, Young J, Hakakha M. Experimental evaluation of a new composite mesh with the selective property of incorporation to the abdominal wall without adhering to the intestines. J Biomed Mater Res 1994;28(3):373–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Losanoff JE, Kjossev KT. Mesh-foil laparostomy. J Am Coll Surg 1997;185(l):89–92.PubMedGoogle Scholar
  46. 46.
    Wantz GE. Incisional hernioplasty with Mersilene. Surg-Gynecol-Obstet 1991;172(2):129–37.PubMedGoogle Scholar
  47. 47.
    Bellon JM, Contreras LA, Sabater C, Bujan J. Pathologic and clinical aspects of repair of large incisional hernias after implant of a polytetrafluoroethylene prosthesis. World J Surg 1997;21(4):402–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Brandt CP, McHenry CR, Jacobs DG, Piotrowski JJ, Priebe PP. Polypropylene mesh closure after emergency laparotomy: morbidity and outcome. Surgery 1995;118(4):736–40; discussion 740–1.PubMedCrossRefGoogle Scholar
  49. 49.
    Saiz A, Willis I, Paul D M S. Laparoscopic ventral hernia repair: a community hospital experience [Authors response]. Am Surg 1997;63(5):465–466.Google Scholar
  50. 50.
    Klein P, Konzen G, Schmidt O, Hohenberger W. [Reconstruction of scar hernias-intraoperative tensiometry for objective determination of procedure of choice]. Chirurg 1996;67(10): 1020–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Elek S, PE Conen. The virulence of staphylococcus pyogeneus for man. Br J Exp Path 1957;38:573.Google Scholar
  52. 52.
    Sharp WV, Belden TA, King PH, Teague PC. Suture resistance to infection. Surgery 1982;91(l):61–3.PubMedGoogle Scholar
  53. 53.
    Blomstedt B, Österberg B. Suture materials and wound infection. Acta Chir Scand 1977;144:269–274.Google Scholar
  54. 54.
    Österberg B, Blomstedt B. Effect of suture materials on bacterial survival in infected wounds. Acta Chir Scand 1979;145:431–4.PubMedGoogle Scholar
  55. 55.
    Paterson-Brown S, Cheslyn-Curtis S, Biglin, J, Dye J, Easmon C, Durdley H. Suture materials in contaminated wounds: a detailed comparison of a new suture with those currently in use. Br J Surg 1987;74:734–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Edlich R, PH Panek, GT Rodeheaver, VC Turnbull, LD Kurtz, MT Edgerton. Physical and chemical configuration of sutures in the development of surgical infection. Ann Surg 1973;177,6:679–88.PubMedCrossRefGoogle Scholar
  57. 57.
    Edlich RF, Panke PH, Rodehaver GT, Kurtz L, Edgerton M. Surgical sutures and infection: a biomaterial evaluation. J Biomed Mat Re Symposium 1974;5(1):115–126.CrossRefGoogle Scholar
  58. 58.
    Österberg B. Influence of capillary multifilament sutures on the antibacterial action of inflammatory cells in infected wounds. Acta Chir Scand 1983;149(8):751–7.PubMedGoogle Scholar
  59. 59.
    Bucknall TE. Abdominal wound closure: choice of suture. J Royal society Medicine 1981;74:580–5.Google Scholar
  60. 60.
    Scher KS, Bernstein JM, Jones CW. Infectivity of vascular sutures. Am Surg 1985;51(10):577–9.PubMedGoogle Scholar
  61. 61.
    Shuhaiber H, Chugh T, Burns G. In vitro adherence of bacteria to sutures in cardiac surgery. J Cardiovasc Surg Torino 1989;30(5):749–53.PubMedGoogle Scholar
  62. 62.
    Chu CC, Williams DF. Effects of physical configuration and chemical structure of suture materials on bacterial adhesion. A possible link to wound infection. Am J Surg 1984;147(2): 197–204.Google Scholar
  63. 63.
    Smith S, Gantt N, Rowe MI, Lloyd DA. Dura versus Gore-Tex as an abdominal wall prosthesis in an open and closed infected model. J Pediatr Surg 1989;24(6):519–21.PubMedCrossRefGoogle Scholar
  64. 64.
    Slim K, Pezet D, Le Roux S, Chipponi J. Mesh infection after laparoscopic herniorrhaphy. Eur J Surg 1996;162(3):247–8.PubMedGoogle Scholar
  65. 65.
    Law NW, Ellis H. A comparison of polypropylene mesh and expanded polytetrafluoroethylene patch for the repair of contaminated abdominal wall defects-an experimental study [see comments]. Surgery 1991;109(5):652–5.PubMedGoogle Scholar
  66. 66.
    Sitzmann J, DW McFadden. The internal retention repair of massive ventral hernia. Am Surgeon 1989;55:719–23.Google Scholar
  67. 67.
    Thill RH, Hopkins WM. The use of Mersilene mesh in adult inguinal and femoral hernia repairs: a comparison with classic techniques. Am Surg 1994;60(8):553–6; discussion 556–7.PubMedGoogle Scholar
  68. 68.
    Gilbert AI, Felton LL. Infection in inguinal hernia repair considering biomaterials and antibiotics [published erratum appears in Surg Gynecol Obstet 1993 Nov; 177(5):528]. Surg Gynecol Obstet 1993;177(2):126–30.PubMedGoogle Scholar
  69. 69.
    Farrah SR, Erdos GW. The production of antibacterial tubing, sutures, and bandages by in situ precipitation of metallic salts. Can J Microbiol 1991;37(6):445–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Troy MG, Dong QS, Dobrin PB, Hecht D. Do topical antibiotics provide improved prophylaxis against bacterial growth in the presence of polypropylene mesh? Am J Surg 1996;171(4):391–3.PubMedCrossRefGoogle Scholar
  71. 71.
    Ott G. Fremdkörpersarkome. 1st ed. Springer, Berlin Heidelberg New York, 1970.Google Scholar
  72. 72.
    Weiss WM, Riles TS, Gouge TH, Mizrachi HH. Angiosarcoma at the site of a Dacron vascular prosthesis: a case report and literature review. J Vase Surg 1991;14(1):87–91.CrossRefGoogle Scholar
  73. 73.
    Weinberg DS, Maini BS. Primary sarcoma of the aorta associated with a vascular prosthesis: a case report. Cancer 1980;46(2):398–402.PubMedCrossRefGoogle Scholar
  74. 74.
    O’Connell TX, Fee HJ, Golding A. Sarcoma associated with dacron prosthetic material: case report and review of the literature. J Thorac Cardiovasc Surg 1976;72(l):94–6.PubMedGoogle Scholar
  75. 75.
    Jennings T, Peterson L, Axiotis C, Freidlaender G, Cooke R, Rosai J. Angiosarcoma associated with foreign body material. A report of three cases. Cancer 1988;62(ll):2436–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Brand KG, Brand I. Risk assessment of carcinogenesis at implantation sites. Plast Reconstr Surg 1980;66(4):591–5.PubMedCrossRefGoogle Scholar
  77. 76.
    Brand KG, Buoen LC, Brand I. Multiphasic incidence of foreign body-induced sarcomas. Cancer Res 1976;36(10):3681–3.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • U. Klinge
  • B. Klosterhalfen

There are no affiliations available

Personalised recommendations