Advertisement

Rule-Based Dynamic Modification of Workflows in a Medical Domain

  • R. Müller
  • E. Rahm
Part of the Informatik aktuell book series (INFORMAT)

Abstract

A major limitation of current workflow systems is their lack of supporting dynamic workflow modifications. However, this functionality is a major requirement for next-generation systems in order to provide sufficient flexibility to cope with unexpected situations and failures. For example, our experience with data intensive medical domains such as cancer therapy shows that the large number of medical exceptions is hard to manage for domain experts. We therefore have developed a rule-based approach for partially automated management of semantic exceptions during workflow instance execution. When an exception occurs, we automatically determine which running workflow instances w.r.t. which workflow regions are affected, and adjust the control flow. Rules are being used to detect semantic exceptions and to decide which activities have to be dropped or added. For dynamic modification of an affected workflow instance, we provide two algorithms (drcd-and p-algorithm) which locate appropriate deletion or insertion points and carry out the dynamic change of control flow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. ASE+96.
    Attie, P.; Singh, M.P.; Emerson, E.A.; Sheth, A.; Rusinkiewicz, M.:Scheduling Workflows by Enforcing Intertask Dependencies. Distributed Systems Engineering Journal, vol 3, 1996: 222 – 238CrossRefGoogle Scholar
  2. BJ96.
    Bussler, C.; Jablonski, S.: Die Architektur des modularen Workflow-Management-Systems MOBILE. In [Vos96]: 369–388Google Scholar
  3. BK94.
    Bonner, A.J.; Kifer, M.: An Overview of Transaction Logic. Theoretical Computer Science, 133: 205–265Google Scholar
  4. BK95.
    Bonner, A.J.; Kifer, M.: Transaction Logic Programming. Technical Report CSRI-323, Computer Science Research Institute, University of Toronto, 1995Google Scholar
  5. CGP+97.
    Casati, F.; Grefen, P.; Pernici, B.; Pozzi, G.; Sanchez, G.: WIDE Workflow Model and Architecture. Technical Report, University of Milano, 1997Google Scholar
  6. DKÖ+98.
    Dogac, D.; Kalinichenko, L.; Özsu, T.; Sheth; A. (eds.): Workflow Management Systems and Interoperability. Springer, Berlin, 1998Google Scholar
  7. DKR+98.
    Davulcu, H.; Kifer, M.; Ramakrishnan, C.R.; Ramakrishnan, I.V.: Logic-Based Modeling and Analysis of Workflows. Proc. PODS98: 25–33Google Scholar
  8. FHK+97.
    Frohn, J.; Himmeröder, R.; Kandzia, P.-Th.; Lausen, G.; Schlepphorst, C.:FLORID - Ein Prototyp für F-Logik. Proc. BTW97, Ulm, 1997: 100117Google Scholar
  9. GR93.
    Giarratano, J.; Riley, G.: Expert Systems: Principles and Programming. PWS Publishing Company, 1993Google Scholar
  10. HSS96.
    Heinl, P.; Schuster, H.; Stein, K.: Behandlung von Ad-hoc-Workflows im MOBILE Workflow-Modell. ITG Fachbericht, STAK ‘86 — Softwaretechnik in Automation und Kommunikation, München, März, 1996Google Scholar
  11. KLW95.
    Kifer, M.; Lausen, G.; Wu, J.: Logical Foundations of Object-Oriented and Frame-Based Languages. Journal of the ACM, 42(4), 1995: 74 1843Google Scholar
  12. MH98.
    Müller, R.; Heller, B.: APetri Net-based Model for Knowledge-based Workflows in Distributed Cancer Therapy. Proc. Intern. EDBT98 Workshop on Workflow Management Systems, Valencia, Spain, March 1998Google Scholar
  13. MHL+98.
    Müller, R.; Heller, B.; Löffler, M.; Rahm, E.; Winter, A.: HematoWork: A Knowledge-based Workflow System for Distributed Cancer Therapy. Proc. of the GMDS98, Bremen, Sep. 98Google Scholar
  14. MR99.
    Müller, R.: Rule-based Interruption and Modification of Workflow Instances. Technical Report. Department of Computer Science, Leipzig University. 1999Google Scholar
  15. MSN+97.
    Müller, R.; Sergl, M.; Nauerth U. et al.: TheMPO: A Knowledge-Based System for Therapy Planning in Pediatric Oncology. Computers inBiology and Medicine vol. 27 (3), 1997: 177 – 200CrossRefGoogle Scholar
  16. MTD+96.
    Musen, M.A.; Tu, S.W.; Das, A.K et al.: EON: A Component-Based Architecture for Automation of Protocol-Directed Therapy. Journal of the American Medical Informatics Association 1996 (3): 367–388Google Scholar
  17. RD98.
    Reichert, M.; Dadam, P.:ADEPT FLEx- Supporting Dynamic Changes of Workflows Without Losing Control. Journal of Intelligent Information Systems 10, 1998: 93–129CrossRefGoogle Scholar
  18. She97.
    Sheth, A.: From Contemporary Workflow Process Automation to Adaptive and Dynamic Work Activity Coordination and Collaboration. Proc. DEXA Workshop on Workflow 1997Google Scholar
  19. SK98.
    Sheth, A.; Kochut, K.: Workflow Applications to Research Agenda: Scalable and Dynamic Work Coordination and Collaboration Systems. In [DKÖ+98]: 35–60:Google Scholar
  20. SSS82.
    Suwa, M.; Scott, A.C.; Shortliffe, E.H.: An approach to verifying completeness and consistency in a rule-based expert system. AI Magazine 3, 1982: 16–21Google Scholar
  21. Vos96.
    Vossen, G.: Geschäftsprozeßmodellierung and Workflow-Management: Modelle, Methoden, Werkzeuge. Thomson, Bonn, 1996Google Scholar
  22. VW98.
    Vossen, G.; Weske, M.: The WASA Approach to Workflow Management for Scientific Applications. In [DKO+98]: 145–164Google Scholar
  23. Wes98.
    Weske, M.: Flexible Modeling and Execution of Workflow Activities. Proc. 31st Hawaii Int’l Conf. on System Sciences (HICSS-31), Software Technology Track (Vol VII ), 1998: 713–722Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • R. Müller
    • 1
  • E. Rahm
    • 1
  1. 1.Institut für InformatikUniversität LeipzigLeipzigDeutschland

Personalised recommendations