Skip to main content

The Random Transverse Field Ising Ferromagnet: The Simplest Disordered Model with a Quantum Phase Transition

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics XI

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 84))

Abstract

After an introduction to quantum phase transitions, we study the quantum phase transition in the two-dimensional random Ising model in a transverse field by Monte Carlo simulations. We find results similar to those known analytically in one-dimension: the dynamical exponent is infinite and, at the critical point, the typical correlation function decays with a stretched exponential dependence on distance. Away from the critical point, there may be different exponents for the divergence of the average and typical correlation lengths, again as in one-dimension, but the evidence for this is less strong.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. B. Griffiths, Phys. Rev. Lett. 23. 17 (1969).

    Article  ADS  Google Scholar 

  2. B. M. McCoy, Phys. Rev. Lett. 23, 383 (1969); Phys. Rev. 188, 1014 (1969).

    Article  ADS  Google Scholar 

  3. P.A. Lee and T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  4. For a discussion of the localization problem in the presence of interactions see D. Belitz and T.R. Kirkpatrick Rev. Mod. Phys. 66, 261 (1994).

    Article  ADS  Google Scholar 

  5. For a discussion of the localization problem in the presence of interactions see D. Belitz and T.R. Kirkpatrick Rev. Mod. Phys. 66, 261 (1994).

    Article  ADS  Google Scholar 

  6. S.V. Kravchenko et al. Phys. Rev. Lett. 77, 4938 (1996).

    Article  ADS  Google Scholar 

  7. S.L. Sondhi, J.P. Carini, S.M. Girvin and D. Shahar, Rev. Mod. Phys. 69, 315 (1997).

    Article  ADS  Google Scholar 

  8. H.P. Wei, L.W. Engel, and D.C. Tsui, Phys. Rev. B. 50, 14609 (1994).

    Article  ADS  Google Scholar 

  9. B. Huckstein, Rev. Mod. Phys. 67, 357 (1995).

    Article  ADS  Google Scholar 

  10. D. Shahar (unpublished).

    Google Scholar 

  11. M.P.A. Fisher, P. Weichman, G. Grinstein and M.P.A. Fisher, Phys. Rev. B 40, 546, (1989).

    Article  ADS  Google Scholar 

  12. W. Wu, B. Ellmann, T. F. Rosenbaum, G. Aeppli and D. H. Reich, Phys. Rev. Lett. 67, 2076 (1991); W. Wu, D. Bitko, T. F. Rosenbaum and G. Acppli; Phys. Rev. Lett. 71, 1919 (1993)

    Article  ADS  Google Scholar 

  13. T. Rosenbaum (private communication).

    Google Scholar 

  14. A.H. Castro Neto, G. Castilla, and B. Jones, cond-mat/9710123.

    Google Scholar 

  15. M. C. de Andrade et al., cond-mat/9802081.

    Google Scholar 

  16. D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992); Phys. Rev. B 51, 6411 (1995).

    Article  ADS  Google Scholar 

  17. R. Shankar and G. Murthy, Phys. Rev. B, 36, 536(1987).

    Article  MathSciNet  ADS  Google Scholar 

  18. B. M. McCoy and T. T. Wu, Phys. Rev. 176, 631 (1968); 188, 982 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  19. One can define the typical correlation function in different ways, which should all have the same critical behavior. One could take the exponential of the average of the log, exp[ln C(r)]av, but this is rather tricky for Monte Carlo simulations where statistical errors could make the estimated value of a very small correlation function go negative. Hence, here for our Monte Carlo simulations, we define the typical correlation function to be the median. Where data for both definitions are reliable, the results are very similar.

    Google Scholar 

  20. S. Katsura, Phys. Rev. 127, 1508 (1962); P. Pfeuty, Ann. Phys. (NY) 27, 79 (1970).

    Article  ADS  MATH  Google Scholar 

  21. A. P. Young and H. Rieger, Phys. Rev. B, 53, 8486 (1996).

    Article  ADS  Google Scholar 

  22. M.J. Thill and O.A. Huse, Physica 15, C321, (1995), 321 (1995).

    Google Scholar 

  23. A.P. Young, Phys. Rev. B. 56 11691, (1997).

    Article  ADS  Google Scholar 

  24. H. Rieger and A. P. Young, Phys. Rev. Lett. 72, 4141 (1994); Phys. Rev. B54, 3328 (1996); M. Guo, R. N. Bhatt and D. A. Huse, Phys. Rev. Lett. 72, 4137 (1994); Phys. Rev. B54, 3336 (1996).

    Article  ADS  Google Scholar 

  25. H. Rieger and N. Kawashima cond-mat/9802104.

    Google Scholar 

  26. However, T. Senthil and S. Sachdev, Phys. Rev. Lett 77, 5292 (1996), have shown, for a model with dilution, that activated dynamical scaling occurs for d ≥ 1 at the percolation concentration.

    Google Scholar 

  27. R. H. Swendsen and J. Wang, Phys. Rev. Lett.58,86(1987).

    Article  ADS  Google Scholar 

  28. U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

    Article  ADS  Google Scholar 

  29. See e.g. H. Evertz cond-mat/9707221.

    Google Scholar 

  30. C. Pich and A. P. Young cond-mat/9802108.

    Google Scholar 

  31. See e.g. J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  32. B.B. Beard and U.-J. Wiese Phys. Rev. Lett., 77, 5130 (1996).

    Article  ADS  Google Scholar 

  33. By T dc we denoted the value of the effectiveclassicaltemperature at the transition. The temperature of the original quantum model is zero at the quantum critical point.

    Google Scholar 

  34. The followingL L Tpairs were used: 1-d (8,16), (12,32), (16,64), (24,128), (32,256), (48,1024), 2-d: (8,12), (12,22), (16,30), (24,62), (32,102), (48,228).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Young, A.P., Pich, C. (1999). The Random Transverse Field Ising Ferromagnet: The Simplest Disordered Model with a Quantum Phase Transition. In: Landau, D.P., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics XI. Springer Proceedings in Physics, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60095-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60095-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64255-5

  • Online ISBN: 978-3-642-60095-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics