Advertisement

Ising Spins on 3D Random Lattices

  • Wolfhard Janke
  • Ramon Villanova
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 84)

Abstract

We perform single-cluster Monte Carlo simulations of the Ising model on three-dimensional Poissonian random lattices of Voronoi/Delaunay type with up to 128 000 sites. For each lattice size quenched averages are computed over 96 realizations. From a finite-size scaling analysis we obtain strong evidence that the critical exponents coincide with those on regular cubic lattices.

Keywords

Ising Model Critical Exponent Lattice Size Voronoi Cell Regular Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.B. Harris, J. Phys. C7, 1671 (1974).ADSGoogle Scholar
  2. [2]
    W. Selke, L.N. Shchur, and A.L. Talapov, in: Annual Reviews of Computational Physics /, ed. D. Stauffer (World Scientific, Singapore, 1994); p. 17.Google Scholar
  3. [3]
    W. Janke, M. Katoot, and R. Villanova, Phys. Lett. B315, 412 (1993); Nucl. Phys. B (Proc. Suppl.) 34, 698 (1994); Phys. Rev. B49, 9644 (1994)ADSGoogle Scholar
  4. [4]
    W. Janke and R. Villanova, Phys. Lett. A209, 179 (1995); Nucl. Phys. B (Proc. Suppl.) 47, 641 (1996)ADSGoogle Scholar
  5. [5]
    C.F. Baillie, W. Janke, and D.A. Johnston, Phys. Lett. B388, 14 (1996); Nucl. Phys. B (Proc. Suppl.) 53, 732 (1997).ADSGoogle Scholar
  6. [6]
    W. Janke and R. Villanova, Mainz preprint (January 1998).Google Scholar
  7. [7]
    C. Itzykson , Fields on Random Lattices, in: Progress in Gauge Field Theories, Proceedings Cargèse Summer School, ed. G’.t Hooft (Plenum Press, New York, 1983). Google Scholar
  8. [8]
    M. Tanemura, T. Ogawa, and N. Ogita, J. Comput. Phys. 51, 191 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    U. Wolff, Phys. Rev. Lett. 62, 361 (1989); Nucl. Phys. B334, 581 (1990)ADSCrossRefGoogle Scholar
  10. [10]
    R.H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987); J.-S. Wang and R.H. Swendsen, Physica A167, 565 (1990)ADSCrossRefGoogle Scholar
  11. [11]
    U. Wolff, Phys. Lett. B228, 379 (1989); P. Tamayo, R.C. Brower, and W. Klein, J. Stat. Phys. 58, 1083 (1990); J.-S. Wang, Physica A164, 240 (1990); C.F. Baillie and P.D. Coddington, Phys. Rev. B43, 10617 (1991). ADSGoogle Scholar
  12. [12]
    A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988); and Erratum, ibid. 63, 1658 (1989)ADSCrossRefGoogle Scholar
  13. [13]
    R.G. Miller, Biometrika 61, 1 (1974); B. Efron, The Jackknife, the Bootstrap and other Resampling Plans (SIAM, Philadelphia, PA, 1982). MathSciNetMATHGoogle Scholar
  14. [14]
    A.M. Ferrenberg and D.P. Landau, Phys. Rev. B44, 5081 (1991).ADSGoogle Scholar
  15. [15]
    H.W.J. Blöte, E. Luijten, and J.R. Heringa, J. Phys. A28, 6285 (1995).ADSGoogle Scholar
  16. [16]
    C. Holm and W. Janke, Phys. Rev. Lett. 78, 2265 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Wolfhard Janke
    • 1
    • 2
  • Ramon Villanova
    • 3
  1. 1.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany
  2. 2.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany
  3. 3.Matemàtiques AplicadesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations