Chemical Diffusion, Wave Propagation, and Equistability in Lattice-Gas Models for Bistable Surface Reactions

  • J. W. Evans
  • M. Tammaro
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 84)


The lattice-gas monomer-dimer surface reaction model exhibits a discontinuous transition between a highly reactive steady state and a near monomer poisoned state, with varying relative impingement rates of the reactant species (provided the monomer desorption rate is below a critical value). This transition is induced by fluctuations in the reactant adlayer. Increasing monomer mobility quenches these fluctuations, thus enhancing metastability near this transition, and leading to bistability in the hydrodynamic limit of high monomer mobility. Within this bistable regime, the more stable steady state displaces the less stable one separated from it by a planar interface. The interface is stationary at an equistability point corresponding to the transition in the lattice-gas model, and it broadens as the desorption rate approaches the critical value. Such behavior in the hydrodynamic limit can be described by reaction-diffusion equations. However, these must account for the influence of adlayer ordering on the reaction kinetics, and for the coverage-dependent and tensorial nature of chemical diffusion, even in the absence of interactions beyond site blocking. All these effects are assessed by applying a variety of conventional and novel Monte Carlo simulation techniques.


Stable Steady State Chemical Diffusion Hydrodynamic Limit Discontinuous Transition Unstable Steady State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.W. Evans, Langmuir 7, 2514 (1991); V.P. Zhdanov and B. Kasemo, Surf. Sei. Rep. 20, 111 (1994); J.W. Evans and M. Sabella, Trends in Stat. Phys. 1, 107 (1994); E.V. Albano, Heterogeneous Chem. Rev. 3, 389 (1996). CrossRefGoogle Scholar
  2. 2.
    R. Imbihl and G. Ertl, Chem. Rev. 95, 697 (1995).CrossRefGoogle Scholar
  3. 3.
    K. Binder and D.P. Landau, Adv. Chem. Phys. 26, 91 (1989).CrossRefGoogle Scholar
  4. 4.
    R. Gomer, Rep. Prog. Phys., 53, 917 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    E.G. Seebauer and C.E. Allen, Prog. Surf. Sei. 49, 265 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    J.W. Evans, J. Chem. Phys. 98, 2463 (1993); 97, 572 (1992). ADSCrossRefGoogle Scholar
  7. 7.
    J.W. Evans and T.R. Ray, Phys. Rev. E 50, 4302 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    M. Tammaro, M. Sabella, and J.W. Evans, J. Chem. Phys. 103, 10277 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    M. Tammaro and J.W. Evans, J. Chem. Phys. 108, 762 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    M. Tammaro and J.W. Evans, Phys. Rev. E, in press (1998).Google Scholar
  11. 11.
    V.I. Bykov, G.S. Yablonskii, and V.L.E., Kinet. Catal. 20, 841 (1979); 20, 845 (1979). Google Scholar
  12. 12.
    R.M. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. Lett. 66, 833 (1986).Google Scholar
  13. 13.
    M. Dumont, P. Dufour, B. Sente, and R. Daggonier, J. Catal. 122, 95 (1990).CrossRefGoogle Scholar
  14. 14.
    H.P. Kaukonen and R.M. Niemenen, J. Chem. Phys. 91, 4380 (1989); M. Ehsasi, M. Matloch, J.H. Block, K. Christman, F.S. Rys, and W. Hirschwald, J. Chem. Phys. 91, 4949 (1989); I. Jensen, H. Fogedby, and R. Dickman, Phys. Rev. A 41, 3411 (1990); J. Mai, W. von Niessen, and A. Blumen, J. Chem. Phys. 93, 3685 (1990); L.V. Lutsevich, V.L. Elokhin, A.V. Myshlyavtsev, A.G. Uslov, and G.S. Yablonskii, J. Catal. 132, 302 (1991); D.S. Sholl and R.T. Skodje, Surf. Sei. 334, 295 (1995). ADSCrossRefGoogle Scholar
  15. 15.
    In some studies in Ref. 14, estimates of P* were corrupted since the system tends to gets trapped in the metastable reactive state just above this transition.Google Scholar
  16. 16.
    R.H. Goodman, D.S. Graff, L.M. Sander, P. Leroux-Hugon, and E. Clement, Phys. Rev. E 52, 5904 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    R.M. Ziff and B.J. Brosilow, Phys. Rev. A 46, 4630 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    B.J. Brosilow and R.M. Ziff, Phys. Rev. A 46, 4534 (1992); E. Albano, Appl. Phys. A 54, 1 (1992); T. Tome and R. Dickman, Phys. Rev. E 47, 948 (1993). ADSGoogle Scholar
  19. 19.
    R. Dickman, Int. J. Mod. Phys. C 4, 271 (1993).ADSCrossRefGoogle Scholar
  20. 20.
    M. Tammaro and J.W. Evans, Surf. Sei. Lett. 395, L207 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    A.S. Mikhailov, Introduction to Synergetics I (Springer, Berlin, 1990).Google Scholar
  22. 22.
    See the review (Ref.[l]) by V.P. Zhdanov and B. Kasemo, Sec.3.2, p. 125.Google Scholar
  23. 23.
    R. Kutner, Phys. Lett. A 81, 239 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    See H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, Berlin, 1991); J. Quastel, Comm. Pure Appl. Math. XLV, 623 (1992). MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • J. W. Evans
    • 1
  • M. Tammaro
    • 2
  1. 1.Ames Laboratory and Department of MathematicsIowa State UniversityAmesUSA
  2. 2.Department of PhysicsUniversity of Rhode IslandKingstonUSA

Personalised recommendations