Acute Pancreatitis: Mechanisms of Cell Injury — Genetics

  • D. C. Whitcomb


Acute pancreatitis was defined at the Symposium of Marseilles as an acute condition typically presenting with abdominal pain and usually associated with elevated pancreatic enzymes in blood or urine, due to inflammatory disease of the pancreas. This clinically based definition remains useful for diagnosing and treating most cases of acute pancreatitis. However, it also reflects the limits in identifying and understanding the molecular and cellular pathophysiologic mechanisms that underlie this common disorder. Acute pancreatitis encompasses a variety of processes. The acute injury within the pancreas appears to develop rapidly, and the inciting factors may resolve before diagnosis and therapeutic interventions can be initiated. The injury results in an acute inflammatory response that may itself worsen the injury, causing significant local and systemic complications. Investigative efforts directed toward understanding and limiting the subsequent inflammatory reaction provide some hope of improving the outcome of more severe cases, if instituted early in the disease process. However, research directed at understanding the early molecular mechanisms initiating acute pancreatitis, and developing effective preventive strategies may be equally important.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arias AE, Boldicke T, Bendayan M (1993) Absence of trypsinogen auto activation and immunolocalization of pancreatic secretory trypsin inhibitor in acinar cells in vitro. In Vitro Cell Dev Biol 29:221–227CrossRefGoogle Scholar
  2. 2.
    Banerjee A, Galloway S, Kingsnorth A (1994) Experimental models of acute pancreatitis. Br J Surg 81:1096–1103PubMedCrossRefGoogle Scholar
  3. 3.
    Bartness M, Duerr RH, Ford MA, et al (1998) Potential linkage of a pancreatitis associated gene on chromosome 12. Pancreas 17:426Google Scholar
  4. 4.
    Bernard C (1856) Leçons de physiologie experimentale, vol 2. Bailleire, Paris, pp 278Google Scholar
  5. 5.
    Blackstone M, Whitcomb DC (1998) Premature trypsin activation in hereditary pancreatitis. Gastroenterology 115:796–799PubMedCrossRefGoogle Scholar
  6. 6.
    Brunzell JD, Miller NE, Alaupovic P, et al (1983) Familial chylomicronemia due to a circulating inhibitor of lipoprotein lipase activity. J Lipid Res 24:12–19PubMedGoogle Scholar
  7. 7.
    Carey MC, Fitzgerald O (1968) Hyperparathyroidism associated with chronic pancreatitis in a family. Gut 9:700–703PubMedCrossRefGoogle Scholar
  8. 8.
    Cavallini G, Tittobello A, Frulloni L, Masci E, Mariana A, Di Francesco V (1996) Gabexate for the prevention of pancreatic damage related to endoscopic retrograde cholangiopancreatography. N Engl J Med 335:919–923PubMedCrossRefGoogle Scholar
  9. 9.
    Collins JE, Brenton DP (1990) Pancreatitis and homocystinuria. J Inherit Metab Dis 13:232–233PubMedCrossRefGoogle Scholar
  10. 10.
    Colomb E, Figarella C (1979) Comparative studies on the mechanism of activation of the two human trypsinogens. Biochim Biophys Acta 571:343–351PubMedGoogle Scholar
  11. 11.
    Colomb E, Figarella C, Guy O (1979) The two human trypsinogens. Evidence of complex formation with basic pancreatic trypsin inhibitor-proteolytic activity. Biochim Biophys Acta 570:397–405PubMedGoogle Scholar
  12. 12.
    Colomb E, Guy O, Deprez P, Michel R, Figarella C (1978) The two human trypsinogens: catalytic properties of the corresponding trypsins. Biochim Biophys Acta 525:186–193PubMedGoogle Scholar
  13. 13.
    Comfort M, Steinberg A (1952) Pedigree of a family with hereditary chronic relapsing pancreatitis. Gastroenterology 21:54–63PubMedGoogle Scholar
  14. 14.
    Cox DW, Breckenridge WC, Little JA (1978) Inheritance of apolipoprotein C-II deficiency with hypertriglyceridemia and pancreatitis. N Engl J Med 299:1421–1424PubMedCrossRefGoogle Scholar
  15. 15.
    Dartsch H, Kleene R, Kern HF (1998) In vitro condensation-sorting of enzyme proteins isolated from rat pancreatic acinar cells. Eur J Cell Biol 75:211–222PubMedGoogle Scholar
  16. 16.
    Dasouki M, Cogan J, Summar M, et al (1998) Heterogeneity in hereditary pancreatitis. Am J Med Genet 77:47–53PubMedCrossRefGoogle Scholar
  17. 17.
    Ferec C, Raguenes O, Bignon JD, Georgelin T, Lebodic L (1997) Hereditary pancreatitis gene (in French). M S Med Sci 13:246–249Google Scholar
  18. 18.
    Figarella C, Amouric M, Guy-Crotte O (1984) Proteolysis of human trypsinogen. I. Pathogenic implications in chronic pancreatitis. Biochem Biophys Res Commun 118:154–161PubMedCrossRefGoogle Scholar
  19. 19.
    Figarella C, Miszczuk-Jamska B, Barrett AJ (1988) Possible lysosomal activation of pancreatic zymogens. Activation of both human trypsinogens by cathepsin B and spontaneous acid activation of human trypsinogen 1. Biol Chem Hoppe-Seylers 369[Suppl]: 293–298Google Scholar
  20. 20.
    Frick TW, Fernandez, del CC, Bimmler D, Warshaw AL (1997) Elevated calcium and activation of trypsinogen in rat pancreatic acini. Gut 41:339–343PubMedCrossRefGoogle Scholar
  21. 21.
    Gorry M, Gabbaizadeh D, Furey W, et al (1997) Multiple mutations in the cationic trypsinogen gene are associated with hereditary pancreatitis. Gastroenterology 113:1063–1068PubMedCrossRefGoogle Scholar
  22. 22.
    Grady T, Saluja A, Kaiser A, Steer M (1996) Edema and intrapancreatic trypsinogen activation precede glutathione depletion during cerulein pancreatitis. Am J Physiol 271:G20–G26PubMedGoogle Scholar
  23. 23.
    Grady T, Otani T, Mah’moud M, Rhee S, Learch MM, Gorelick FS (1998) Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury. Am J Physiol 275:G1010–G1017PubMedGoogle Scholar
  24. 24.
    Greenbaum LM, Hirshkowitz A, Shoichet I (1959) The activation of trypsinogen by ca-thepsin B. J Biol Chem 234:2885–2890PubMedGoogle Scholar
  25. 25.
    Gress TM, Micha AE, Lacher U, Adler G (1997) Hereditary pancreatitis, caused by mutations in the cationic trypsinogen gene (in German). Dtsch Med Wochenschr 122:1461–1465PubMedCrossRefGoogle Scholar
  26. 26.
    Gress TM, Micha AE, Lacher U, Adler G (1998) Diagnosis of a “hereditary pancreatitis” by the detection of a mutation in the cationic trypsinogen gene (in German). Dtsch Med Wochenschr 123:453–456PubMedCrossRefGoogle Scholar
  27. 27.
    Hofbauer B, Daluja A, Learch M, et al (1998) Intra-acinar cell activation of trypsinogen during cerulein-induced pancreatitis in rats. Am J Physiol 275:G352–G362PubMedGoogle Scholar
  28. 28.
    Hubbard S, Eisenmenger F, Thornton J (1994) Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3:757–768PubMedCrossRefGoogle Scholar
  29. 29.
    Hubbard S, Eisenmenger F, Thornton J (1994) Limited proteolysis sites modeling, Hubbard. kin 3.5 (2PTC, 1TGN, 5RSA). Protein Sci [serial online] 3:URL:, Filename: Hubbard.kin 3.5Google Scholar
  30. 30.
    Klumperman J, Kuliawat R, Griffith JM, Geuze HJ, Arvan P (1998) Mannose 6-phosphate receptors are sorted from immature secretory granules via adaptor protein AP-1, clathrin, and syntaxin 6-positive vesicles. J Cell Biol 141:359–371PubMedCrossRefGoogle Scholar
  31. 31.
    Kruger B, Lerch MM, Tessenow W (1998) Direct detection of premature protease activation in living pancreatic acinar cells. Lab Invest 78:763–764PubMedGoogle Scholar
  32. 32.
    Kurth T, Teich N, Kistner S, Mossner J, Keim V (1998) Expression of the N21I-mutation of human cationic trypsinogen in a yeast system. Digestion 59:243 (abstr)Google Scholar
  33. 33.
    Le Bodic L, Bignon JD, Raguenes O, et al (1996) The hereditary pancreatitis gene maps to long arm of chromosome 7. Hum Mol Genet 5:549–554PubMedCrossRefGoogle Scholar
  34. 34.
    Leach SD, Moldin IM, Sheele GA, Gorelick FS (1991) Intracellular activation of digestive enzymes in rat pancreatic acini: stimulation by high dose of cholecystokinin. J Clin Invest 87:362–366PubMedCrossRefGoogle Scholar
  35. 35.
    Lerch M, Adler G (1994) Experimental models of acute pancreatitis. Int J Pancreatol 15:159–170PubMedGoogle Scholar
  36. 36.
    Mithofer K, Fernandez-Del Castillo C, Frick TW, Lewandrowski KB, Rattner DW, Warshaw AL (1995) Acute hypercalcemia causes acute pancreatitis and ectopic trypsinogen activation in the rat [see comments]. Gastroenterology 109:239–246PubMedCrossRefGoogle Scholar
  37. 37.
    Mithofer K, Fernandez-Del Castillo C, Rattner DW, Warshaw AL (1998) Subcellular kinetics of early trypsinogen activation in acute rodent pancreatitis. Am J Physiol 274:G71–G79PubMedGoogle Scholar
  38. 38.
    Nagasaki Y, Koizumi M, Shimosegawa T, et al (1997) Trypsinogen gene mutation in Japanese patients with juvenile or familial pancreatitis. Pancreas 15:447Google Scholar
  39. 39.
    Nishimori I, Adachi K, Kamakura M, et al (1997) Cationic trypsinogen gene mutation in hereditary pancreatitis. Pancreas 14:448Google Scholar
  40. 40.
    Otani T, Chepilko S, Grendell J, Gorelick F (1998) Co-distribution of trypsinogen activation peptide and the granule membrane protein, GRAMP-92, in rat cerulein-induced pancreatitis. Am J Physiol 275:G999–G1009PubMedGoogle Scholar
  41. 41.
    Pandya A, Blanton SH, Landa B, et al (1996) Linkage studies in a large kindred with hereditary pancreatitis confirms mapping of the gene to a 16-cm region on 7q. Genomics 38:227–230PubMedCrossRefGoogle Scholar
  42. 42.
    Perrault J (1994) Hereditary pancreatitis. Gastroenterol Clin North Am 23:743–752PubMedGoogle Scholar
  43. 43.
    Rao K, Tuma J, Lombardi B (1976) Acute hemorrhagic pancreatic necrosis in mice. Intraparenchymal activation of zymogens, and other enzyme changes in pancreas and serum. Gastroenterology 70:720–726PubMedGoogle Scholar
  44. 44.
    Richardson D (1996) MAGE. Protein Science Kinemages. Available on URL:, gopher://gopher.prosci.uci/11/kinemage: The Protein Society, 1992–1996Google Scholar
  45. 45.
    Rinderknecht H (1986) Activation of pancreatic zymogens. Normal activation, premature intrapancreatic activation, protective mechanims against inappropriate activation. Dig Dis Sci 31:314–321PubMedCrossRefGoogle Scholar
  46. 46.
    Rinderknecht H (1993) Pancreatic secretory enzymes. In: Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA (eds) The pancreas: biology, pathobiology, and disease. Raven, New York, pp 219–251Google Scholar
  47. 47.
    Rinderknecht H, Adham NF, Renner IG, Carmack C (1988) A possible zymogen self-destruct mechanism preventing pancreatic autodigestion. Int J Pancreatol 3:33–44PubMedGoogle Scholar
  48. 48.
    Saluga AK, Donovan EA, Yamanaka K, Yamaguchi Y, Hofbauer B, Steer ML (1997) Cerulein-induced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. Gastroenterology 113:304–310CrossRefGoogle Scholar
  49. 49.
    Sibert JR (1978) Hereditary pancreatitis in England and Wales. J Med Genet 15:189–201PubMedCrossRefGoogle Scholar
  50. 50.
    Steer ML (1992) How and where does acute pancreatitis begin? Arch Surg 127:1350–1353PubMedGoogle Scholar
  51. 51.
    Steer ML, Meldolesi J, Figarella C (1984) Pancreatitis. The role of lysosomes. Dig Dis Sci 29:934–938PubMedCrossRefGoogle Scholar
  52. 52.
    Steinberg W, Schlesselman S (1987) Treatment of acute pancreatitis: comparison of animal and human studies. Gastroenterology 93:1420–1427PubMedGoogle Scholar
  53. 53.
    Ward JB, Petersen OH, Jenkins SA, Sutton R (1995) Is an elevated concentration of acinar cytosolic free ionised calcium the trigger for acute pancreatitis? (review) [42 refs]. Lancet 346:1016–1019PubMedCrossRefGoogle Scholar
  54. 54.
    Whitcomb DC, Gorry MC, Preston RA, et al (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145PubMedCrossRefGoogle Scholar
  55. 55.
    Whitcomb DC, Preston RA, Aston CE, et al (1996) A gene for hereditary pancreatitis maps to chromosome 7q35. Gastroenterology 110:1975–1980PubMedCrossRefGoogle Scholar
  56. 56.
    Whitcomb DC, Ulrich II CD (1999) Hereditary pancreatitis: new insights, new directions. In: Neoptolemus JP (ed) Balliere’s clinical gastroenterology: acute pancreatitis. Blackwell Scientific, Oxford (in press)Google Scholar
  57. 57.
    Wilson DE, Hata A, Kwong LK, et al (1993) Mutations in exon 3 of the lipoprotein lipase gene segregating in a family with hypertriglyceridemia, pancreatitis, and non-insulin-dependent diabetes. J Clin Invest 92:203–211PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • D. C. Whitcomb

There are no affiliations available

Personalised recommendations