Skip to main content

Microporosity by Evaporation of Volatile Products

  • Chapter
  • 320 Accesses

Abstract

If a polymer is dissolved in a volatile liquid and this liquid is removed by spraying, the polymer forms fine fibers which may be deposited on a releasing surface as a fine, microporous fiber fleece (see Sect. 9.1). In this case the molecular weight of the polymer should be rather low so that the polymer is able to dissolve in the volatile liquid. Another possibility of creating micropores is to mix a nonsolvent into the polymer solution in the volatile liquid. If this nonsolvent is also able to evaporate and has a lower volatility than the solvent, micropores are produced in a similar way to the coagulation process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

9.1 Spraying of Plymer solutions

  1. US 2 999 788 (DuPont; PW Morgan; 22.1.59/12.9.61)

    Google Scholar 

  2. US 3 364 063 (Kendall Co.; D Satas; 20.7.64/16.1.68)

    Google Scholar 

  3. DAS 1 225 380 (Bayer AG; A Reischl, B Zorn; 4.6.64/22.9.66)=BE 664 870=NE 6 507 007

    Google Scholar 

  4. DDR 34 258 (VEB Kunstblume Sebnitz; E Pilz, E Augst; 27.12.63/28.12.64)

    Google Scholar 

  5. FR 1 501187 (Bayer AG; D Prior. 5.11.65; 4.11.66/10.11.67)=NE 6 615 459=DAS 1 267 841

    Google Scholar 

  6. FR 1 530 717 (Uniroyal Inc.; RN Steel, PV Butsatz, RT Nojiri; UR Prior. 31–5–66; 3i.5.67/28.6.68)=NE 6 707 452

    Google Scholar 

  7. US 3 496 056 (Uniroyal Inc.; RN Steel et al.; 6.2.69/17.2.70 div. from Appi, of Prior. 31.5.66, see also FR 1 530 717

    Google Scholar 

  8. US 2 950 752, (Am. Viscose Corp. 24.12.53); US 2 988 469, (Am. Viscose Corp. 22.12.59)

    Google Scholar 

  9. GB 1196 090 (Uniroyal Inc.; US Prior. 18.5.67; 194.68/24.6.7o)=FR 1 580 935=NE 6 806 362 =US 3 537 947

    Google Scholar 

  10. DBP 830 585 (Alkor; K Lissmann, L Wolf; 9.12.44/16.10.52)

    Google Scholar 

  11. FR1 298 959 (Kendall Co.; D Satas; US Prior. 23.5.60; 23.5.61/12.6.62)

    Google Scholar 

  12. JA 27 273/67 (Toyo Rubber Ind. Co. Ltd.; 13.7.64/23.12.67)

    Google Scholar 

  13. GB 1 081 406 (C Freudenberg; H Fabricius et al.; D Prior. 25.10.63; 28.10.64/31.8.67)

    Google Scholar 

  14. JA 13 156/66 (Teijin Co.Ltd.; 27.11.63/25.7.66)

    Google Scholar 

  15. Satas D (1965) Porous sprayed sheets and coatings. Ind Eng Chemistry 57:38

    Article  CAS  Google Scholar 

  16. JA 2 233/68 (Teijin Co. Ltd.; 24.2.65/26.1.68)

    Google Scholar 

  17. JA 74–004 069 (Yuasa Battery Co. Ltd.; 30.6.66/30.1.74)

    Google Scholar 

  18. SZ 417 085 (C Freudenberg; E Demme et al.; 30.10.63/31.1.67)

    Google Scholar 

  19. DOS 4 425 793 (M Keppeler; 21.7.94/1.2.96); DOS 4 425 792 (M Keppeler; 21.7.94/1.2.96)

    Google Scholar 

  20. DOS 2 621141 (C Freudenberg; K Schmidt, H Hoffmann; 6.4.78)

    Google Scholar 

  21. JA 53 075 304 (Honey Chem. Ind.; 6.2.74/4.7.78)=JA 74–156 444+JA 74–14 246

    Google Scholar 

9.2 Selective Evaporation Process

  1. BE 652 899 (Feldmühle; OE Prior. 13.9.63; 10.9.64/4.1.65)=OE 246–093

    Google Scholar 

  2. One drop of a solvent is dropped on a paper at 20 °C and 66% air humidity. The paper becomes transparent. The time required to evaporate the drop is measured. (The paper becomes intransparent again.) The same is done with diethyl ether as a comparison. Then the time required to evaporate the solvent to be tested is divided by the time the diethyl ether needs to evaporate. The evaporation number is the quotient of this division. The evaporation number is a figure without a dimension (as e.g. second etc.) with diethyl ether as evaporation number as 1. It is measured according to DIN 53 170

    Google Scholar 

  3. DBP 1694 059 (Bayer AG; A Reischl, H Träubel, B Zorn; 3.1.66/3.6.7i)=BE 692 n6=FR 1510 261

    Google Scholar 

  4. A survey of solvent parameters of polymers and solvents can be found in: Bandrup J, Immergut EE (1966) Polymer handbook, vol I. New York, p 341 etc.; solvents and nonsolvents for different polymers are named in Bandrup J, Immergut EH (1966) Polymer handbook, 3rd ed. pp VII/391

    Google Scholar 

  5. OS 1 694179 (Bayer AG; A Reischl et al.; 9.8.67/26.8.71)=FR 1 578 378=NE 6 811 i67=BE 719 174

    Google Scholar 

  6. IUP 15=DIN 53 333, see Das Leder (1961) 86

    Google Scholar 

  7. OS 1 694 205 (Bayer AG; H Träubel, B Zorn; 12.10 67/4.11.71)=BE 706 920=NE 6 715 596, addition to OS 1 694 085

    Google Scholar 

  8. Dyck M, Hoyes F (1964) Löslichkeits-und Wasserstoffbrückenparameter. Farben und Lack 70:522

    CAS  Google Scholar 

  9. JA 6 149/68 (Yuasa Battery Co.; 22.7.63/6.3.68)

    Google Scholar 

  10. JA 24 548/71 (Yuasa Battery Co.; 29.3.66/14.7.71)

    Google Scholar 

  11. BE 600 256 (DuPont; DT Bottorf, JL Hecht, VE James; US Prior. 7.2.60; 15.2.61/16.8.61)

    Google Scholar 

  12. GB 1 051 834 (Polymer Corp; GB Prior. 22.8.62; 16.8.63/21.12.66)

    Google Scholar 

  13. RA 226 835 (NA Abaturova, IN Vlodavets; 6.12.66/March 69)

    Google Scholar 

  14. NE 6 715 596 (Bayer AG; D Prior. 22.11.66; 16.11.67/24.5.68)

    Google Scholar 

  15. OS 1 619 213 (Ceskoslov. Zavody Gumarenski & Plastikavske; K Hlustik; CZ Prior. 18.7.66; 27.6.67/10.9.70)=DDR 63 36o=FR 1 531 873

    Google Scholar 

  16. JA 24 547/71 (Yuasa Battery Co. Ltd.; 25.3.66/14.7.71)

    Google Scholar 

  17. US 3 546 001 (Immont Corp.; Ch Giannone et al.; 11.2.69/8.12.70; cip. 16.5.66)

    Google Scholar 

  18. US 3 403 046 (Interchemical Corp.; FH Schwacke, Ch Giannone; 8.10.65/24.9.68)

    Google Scholar 

  19. OS 2 136 558 (Goodrich; WTh Murphy; 22.7.71/3.2.72; US Prior. 24.7.70)

    Google Scholar 

  20. OS 2 523 740 (Stamicarbon B. V.; AJ Pennings et al.; NE Prior. 30.5.74; 28.5.75/11.12.75)

    Google Scholar 

  21. JA 73–36 940 (Yuasa Battery Co. Ltd.; 29.12.70/8.11.71)

    Google Scholar 

  22. Träubel H (1991) Homogene und heterogene Raumkörper-Leder und seine mikroporösen Substitute; ein Vergleich. Das Leder 42:109

    Google Scholar 

  23. DE 3 507 467 (Bayer; K Nachtkamp et al.; 2.3.85/4.9.86); DE 3 521762 (Bayer; 19.6.85/2.1.87)

    Google Scholar 

  24. JA 59 179 636 [Tejin KK; 31.3.83/12.10.84 (53 741)]

    Google Scholar 

  25. GB 1135 463 (Interchemical Corp.; 9.5.66/4.12.68; US Prior. 16.6.65)=FR 1 514 955=SZ 479 655 =DE 1 619 255

    Google Scholar 

  26. WO 94 20 665 (Tejin Ltd.; K Okawa, K Sasaki, Y Suzuki; 10.3.93/15.9.94)=EP 640 715=JA 065 17 893; JA 062 64 369 (Teijin Cordley Ltd.; 10.3.93/20.9.94); JA 062 64 370 (Teijin Cordley Ltd.; 10.3.93/20.9.94); JA 062 64 371 (Teijin Cordley Ltd.; 10.3.93/20.9.94)

    Google Scholar 

  27. JA 79–157 803 (Fujikura Rubber Works; 1.6.78/13.12.79)=JA 78–66 140

    Google Scholar 

  28. JA 53 023 101 (Teijin KK; 7.9.76/27.3.78)=JA 76–106 228

    Google Scholar 

9.3 Selective Evaporation Process of Dispersed Polymers

  1. SZ 1 546/66 (Chemgene Corp.; R Smith-Johannsen; US Prior. 3.2.65; 3.2.66/15.10.69)=NE 6 601383

    Google Scholar 

  2. FR1547182 (Gurit AG; CH Prior. 28.12.66; 14.12.67/22.11.68)=NE 6 716 617

    Google Scholar 

  3. JA 49 111970 (Nikko Physiochem.Shik; 26.2.73/24.10.74)

    Google Scholar 

  4. OS 1 809 610 (BASF; CH Krauch, A Sanner; 19.11.68/11.6.70)

    Google Scholar 

  5. JA 49 111970 (Nikko Physiochem. Shik; 26.2.73/24.10.74)

    Google Scholar 

  6. JA 5117586 (Mitsubishi Kasei Corp.; 24.10.91/14.5.93)

    Google Scholar 

  7. DAS 1 045 359 (Göppinger Kaliko; W Gräbner; 22.6.56/4.1248)

    Google Scholar 

  8. FR 1554 754 (Teijin Ltd.; JA Prior. 7.11.66; 7.11.67/24.1.69)

    Google Scholar 

  9. NE 6 815 306 (Bayer; K König, H Träubel, A Reischl, B Zorn; D Prior. 25.10.67; 25.10.68/ 29.4.69)=OS 1 694 213

    Google Scholar 

  10. DAS 1 020 300 (HC Bick, RS Horn, RF Patt; US Prior. 21.11.51; 18.11.52/5.12.57)=FR 1 070 592 =GB 734 791=US 2 746 941

    Google Scholar 

  11. OS 2 004 276 (Teijin Ltd.; K Kigane et al.; JA Prior 31.1.69 (=JA 7 088–69); 30.1.70/24.9.70)= FR 2 033 850

    Google Scholar 

  12. JA 49 682/72 (Teijin Ltd.; 25.12.69/13.12.72)

    Google Scholar 

  13. OS 2 063 949 (PPG Industries Inc.; JA Steiner; US Prior. 22.6.70; 28.12.70/30.12.71)

    Google Scholar 

  14. NE 6 516 286 (USM Corp., US Prior. 18.12.64; 14–12.65/20.6.66)=FR 1 462 597

    Google Scholar 

  15. OE 213 367 (Göppinger Kaliko; 22.2.60/15.7.60)

    Google Scholar 

  16. JA 19 623/72 (Teijin Ltd.; 14.10.68/5.6.72)

    Google Scholar 

  17. JA 43 047/72 (Teijin Ltd.; 31.1.69/31.10.72)

    Google Scholar 

  18. OS 2 020 153 (Teijin Ltd.; K Kigane et al.; JA Prior. 2.4.69; 24.4.70/17.12.70)

    Google Scholar 

  19. JA 16 764/63 (Nippon Mikusani Kogyo KK; 21.8.61/3.9.63)

    Google Scholar 

  20. JA 6 196/66 (Nankai Gum Co.Ltd.; 12.2.62/1.4.66)

    Google Scholar 

  21. RA 164 579 (IV Plotnikov et al.; 15–1.62/Jan.65)

    Google Scholar 

  22. FR 1418 697 (IBM; P Chebiniak, RT Wiley; US Prior 30.12.63; 24.12.64/11.10.65)

    Google Scholar 

  23. OS 1469 597 (USM; CG. Newton; US Prior. 18.12.64; 18.12.65/2.1.69)

    Google Scholar 

  24. JA 49 067 952 (Nikko Shikiryo Kogyo KK; 4.11.72/2.7.74)

    Google Scholar 

  25. JA 49 130 476 (Teijin; 17.4.73/13.12.74)

    Google Scholar 

  26. JA 06 294 077 (94,394,077) (Achilles Corp.; K Oosawa, K Mitsumura, K Sugaya; 10.2.93/21.10.94)

    Google Scholar 

  27. JA 07145570 (Unitika Ltd.; T Furuta, K Kamemaru; 22.11.93/6.6.95)

    Google Scholar 

  28. JA 4202859 (Achilles Corp.; 29.11.90/23.7.93)

    Google Scholar 

  29. DOS 3 836 030 (Bayer AG; W Thoma, R Langel, W Schröer; 22.10.88/3.5.90); EP 238 991 (Bayer AG; W Thoma, R Langel et al.; 26.3.86/30.9.87); DOS 3 507 467 (Bayer AG; K Nachtkamp, W Thoma et al.; 2.3.85/4.9.86)

    Google Scholar 

  30. FR 2 384 058 (Adidas; H Dassler; 17.3.77/13.10.78)=DOS 2 711 579

    Google Scholar 

  31. JA 51 024 666 (Bando Chem. Ind. Ltd.; 23.8.74/28.2.76)

    Google Scholar 

  32. FR 1 488 995 (Soc. Anon. Peltex; 13.9.65/12.6.67)=NE 6 612 797=BE 686 221

    Google Scholar 

  33. JA 74 039 172 (Toyo Rubber Ind. Co.; 22.5.70/23.10.74)=JA 70–44137

    Google Scholar 

  34. FR 1337 536 (R. T. Vanderbilt Co. Inc.; RR Waterman et al.; 11.2.63/20.4.64; US Prior. 6.12.62)= US 62–242 653

    Google Scholar 

  35. JA 60 017 181 (Teijin KK; 4.7.83/29.1.85)=JA 83–120 316); JA 60 021 982 (Teijin KK; 4.2.83/ 8.7.83)=JA 83–129 557

    Google Scholar 

  36. DOS 3 327 862 (Dainichiseika Color & Chem. Mfg. Co. Ltd., Ukima Colour & Chem.; K Kuri-yama et al.; 2.8.83/14.2.85)

    Google Scholar 

  37. JA 63 286 466 (Dainichiseika Color Chem.; 20.5.87/24.11.88)=JA 87–121 089

    Google Scholar 

  38. JA 01138 263 (Dainichiseika Color Chem.; 26.11.87/31.5.89)=JA 87–295 963

    Google Scholar 

  39. JA 5117586 (Mitsubishi Kasei Corp.; 24.10.91/14.5.93)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Träubel, H. (1999). Microporosity by Evaporation of Volatile Products. In: New Materials Permeable to Water Vapor. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59978-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59978-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64206-7

  • Online ISBN: 978-3-642-59978-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics