Diagnostic Cytogenetics pp 416-438

Part of the Springer Lab Manual book series (SLM)

Spectral Karyotyping in Clinical and Tumor Cytogenetics

  • Evelin Schröck
  • Yuval Garini
  • Michael Köhler
  • Thomas Ried

Abstract

Karyotype analysis based on chromosome banding techniques has been the diagnostic “gold standard“ in clinical and cancer cytogenetics for more than 20 years.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barch MJ, Knutsen T, Spurbeck JL (eds.) The AGT Cytogenetics Manual, Lippinott-Raven, 1997Google Scholar
  2. Barlow C, Hirotsube S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, Wynshaw-Boris A (1996) Afra-deficient mice: a paradigm of ataxia telangiectasia. Cell 86: 159–171PubMedCrossRefGoogle Scholar
  3. Cohen IJ, Issakov J, Avigad S, Stark B, Meller I, Zaizov R, Bar-Am I (1997) Synovial sarcoma of bone delineated by spectral karyotyping. Lancet 350: 1679–1680PubMedCrossRefGoogle Scholar
  4. Coleman AE, Schröck E, du Manoir S, Weaver Z, Wienberg J, Ferguson-Smith M, Potter M, Ried T, Janz S (1997) Multicolor spectral karyotyping (SKY) in T(12;15)-positive BALB/c plasmacytomas Cancer Res. 57:4585–4592PubMedGoogle Scholar
  5. Garini Y, Macville M, du Manoir S, Buckwald RA, Lavi M, Katzir N, Wine D, Bar-Am I, Schröck E, Cabib D, Ried T (1996a) Spectral karyotyping. Bioimaging 4:65–72CrossRefGoogle Scholar
  6. Garini Y, Katzir N, Cabib D, Buckwald RA, Soenksen DJ, Malik Z (1996b) Fluorescence imaging spectroscopy and microscopy, X. F. Wang and B. Herman, (eds.) (John Wiley and Sons) 137-87–137124Google Scholar
  7. Hannig V, Schroer RJ, Martens P, Phelan MC (1984) Chromosome 4p deletion with substitution of unknown chromosomal segment and clinical signs of Wolf syndrome. Proc. Greenwood Genet. Center 3:19–21Google Scholar
  8. Liyanage M, Coleman A, du Manoir S, Veldman T, McCormack S, Dickson RB, Barlow C, Wynshaw-Boris A, Janz S, Wienberg J, Ferguson-Smith MA, Schröck E, Ried T (1996) Multicolour spectral karyotyping of mouse chromosomes. Nature Genet 14:312–315PubMedCrossRefGoogle Scholar
  9. Macville, M., Schröck, E., Padilla-Nash, H., Ghadimi, B.M., Keck, C., Zimonjic, D., Popescu, N., Ried T. (1999) Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res. 59: 141–150PubMedGoogle Scholar
  10. McCormack SJ, Weaver Z, Deming S, Natarajan G, Torri J, Johnson MD, Liyanage M, Ried T, Dickson RB (1998) Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability. Oncogene 16(21):2755–2766PubMedCrossRefGoogle Scholar
  11. Meltzer PS, Guan XY, Burgess A, Trent JM (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nature Genet 1, 24–28PubMedCrossRefGoogle Scholar
  12. Ried T, Liyanage M, du Manoir S, Heselmeyer K, Auer G, Macville M, Schröck E. (1997) Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping. J. Mol. Med. 75: 801–814PubMedCrossRefGoogle Scholar
  13. Roberts I, et al., TIG submittedGoogle Scholar
  14. Roschke A, Thraves PJ, Kuettel MR, Dritschilo A, Ried T (1997) SKY and CGH analysis of genetic changes involved in radiation-induced neoplastic transformation of human prostate epithelial cells. ASHG abstract #439Google Scholar
  15. Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter D, Bar-Am I, Soenksen D, Garini Y, Ried T (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497PubMedCrossRefGoogle Scholar
  16. Schröck E, Veldman T, Ning Y, Padilla-Nash H, Spurbeck J, Shaffer L, Papenhausen P, Kozma C, Phelan MC, Kjeldsen E, Biesecker L, du Manoir S, Ried T (1997) Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities. Hum. Genet. 101-255–101-262Google Scholar
  17. Speicher M, Ballard SG, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet 12:368–375PubMedCrossRefGoogle Scholar
  18. Telenius H, Pelear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskjöld M, Pfragner R and Ponder BAJ (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow sorted chromosomes. Genes Chrom Cancer 4, 257–263PubMedCrossRefGoogle Scholar
  19. Van Dilla MA, Deaven LL, Albroght KL, Allen NA, Aubuchon MR, Bartholdi MF, Brown NC, Campbell EW, Carrano AV, Clark LM, Cram LS, Crawford BD, Fuscoe JC, Gray JW, Hildebrand CE, Jackson PJ, Jett JH, Longmire JL, Lozes CR, Luedemann ML, Martin JC, McNinch JS, Meincke LJ, Mendelsohn ML, Meyne J, Moyzis RK, Munk AC, Perlman J, Peters DC, Silva AJ, Trask BJ (1986) Human chromosome specific DNA libraries: construction and availability. Biotechnology 4:537–552CrossRefGoogle Scholar
  20. Veldman, T., Vignon, C., Schröck, E., Rowly, J.D., Ried, T. (1997) Hidden chromosome abnormalities in hematological malignancies detected by multicolour spectral karyotyping. Na. Genet. 15: 406–410.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Evelin Schröck
    • 1
  • Yuval Garini
    • 2
  • Michael Köhler
    • 3
  • Thomas Ried
    • 4
  1. 1.National Cancer Institute (NCI/NIH)BethesdaUSA
  2. 2.Applied Spectral Imaging, Ltd.Migdal Ha’EmekIsrael
  3. 3.Applied Spectral ImagingEdingen-NeckarhausenGermany
  4. 4.National Cancer Institute (NCI/NIH)BethesdaUSA

Personalised recommendations