General Electromagnetic Fields

  • Helmut Wiedemann


In this Chapter we will derive expressions for general field and alignment errors to be used in the Hamiltonian perturbation theory. Pure electromagnetic multipole fields have been derived in [2.1] from the Laplace equation while ignoring kinematic terms as well as higher-order field perturbations. In preparation for more sophisticated beam transport systems and accelerator designs aiming, for example, at ever smaller beam emittances it becomes imperative to consider higher-order perturbations to preserve desired beam characteristics. We will therefore derive the general electromagnetic fields from the curvilinear Laplace equation and formulate the general equations of motion in both planes with all higher-order geometric and chromatic perturbations up to third order. To meet also the increasing use of wiggler magnets and superconducting magnets, we discuss magnetic parameters of both magnet types.


Current Sheet Deflection Angle Curvilinear Coordinate System Fringe Field Beam Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    H. Wiedemann: Particle Accelerator Physics I (Springer, Berlin, Heidelberg 1993)Google Scholar
  2. 2.2
    K.L. Brown: Adv. Particle Phys. 1, 71 (1967)Google Scholar
  3. 2.3
    G. Leleux: Int. Note SOC/ALIS 18 (1969), Saclay, Département du Synchrotron SaturneGoogle Scholar
  4. 2.4
    K.W. Robinson, G.A. Voss: Int’l Symp. Electron and Positron Storage Rings (Saclay) (Presses Universitaire de France, Paris 1966) Proc. p.III−4Google Scholar
  5. 2.5
    J.M. Paterson, J.R. Rees, H. Wiedemann: Stanford Linear Accelerator Center, Int. Note PEP-124 (1975)Google Scholar
  6. 2.6
    H. Wiedemann: Nucl. Instrum. Methods A 266, 24 (1988)ADSCrossRefGoogle Scholar
  7. 2.7
    H. Motz: J. Appl. Phys. 22, 527 (1951)zbMATHCrossRefGoogle Scholar
  8. 2.8
    W.R. Smythe: Static and Dynamic Electricity (McGraw-Hill, New York 1950)Google Scholar
  9. 2.9
    L.R. Elias, W.M. Fairbank, J.M.J. Madey, H.A. Schwettmann, T.J. Smith: Phys. Rev. Lett. 36, 717 (1976), 1190 (1952)ADSCrossRefGoogle Scholar
  10. 2.10
    B. Kincaid: J. Appl. Phys. 48, 2684 (1977)ADSCrossRefGoogle Scholar
  11. 2.11
    L. Smith: Effects of wigglers and undulators on beam dynamics. Laboratory ESG Tech. Note 24, Lawrence Berkeley Laboratory, Berkeley, CA (1986)Google Scholar
  12. 2.12
    M.N. Wilson: Superconducting Magnets (Clarendon, Oxford 1983)Google Scholar
  13. 2.13
    E. Willen, P. Dahl, J. Herrera: Superconducting magnets. AIP Conf. Proc. 153/2, 1120 (American Institute of Physics, New York 1987)Google Scholar
  14. 2.14
    Proc. CERN Accelerator School at Haus Rissen, Hamburg (1988), CERN 89-04Google Scholar
  15. 2.15
    I.I. Rabi: Rev. Sci. Instrum. 5, 78 (1934)ADSCrossRefGoogle Scholar
  16. 2.16
    R.A. Beth: Proc. 6th Intl Conf. on High Energy Accelerators at CEA, Cambridge (1967) p.387Google Scholar
  17. 2.17
    R.A. Beth: J. Appl. Phys. 37, 2568 (1966)ADSCrossRefGoogle Scholar
  18. 2.18
    E. Weber: Electromagnetic Fields (Wiley, New York 1950)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Helmut Wiedemann
    • 1
  1. 1.Applied Physics Department and Synchrotron Radiation LaboratoryStanford UniversityStanfordUSA

Personalised recommendations