Hamiltonian Formulation of Beam Dynamics

  • Helmut Wiedemann


Particles in electromagnetic fields behave like oscillators and are conservative systems as long as we ignore statistical effects like the emission of quantized photons in the form of synchrotron radiation. Even in such cases particles can be treated as conservative systems on average. In particular, particle motion in beam transport systems and circular accelerators is oscillatory and can be described in terms of perturbed oscillators. The Hamiltonian formalism provides a powerful tool to analyze particle motion and define conditions of stability and onset of instability. In this chapter we will derive the Lagrangian and Hamiltonian formalism with special consideration to particle beam dynamics.


Canonical Variable Canonical Transformation Hamiltonian Formulation Resonance Pattern Beam Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1
    H. Goldstein: Classical Mechanics (Addison-Wesley, Reading 1950)Google Scholar
  2. 1.2
    L.D. Landau, E.M. Lifshitz: Mechanics, 3rd edn. (Pergamon, Oxford 1976)Google Scholar
  3. 1.3
    L.D. Landau, E.M. Lifshitz: The Classical Theory of Fields, 4th edn. (Pergamon, Oxford 1975)Google Scholar
  4. 1.4
    L. Lur’é Mécanique Analytique (Librairie Universitaire, Louvain 1968)Google Scholar
  5. 1.5
    H. Wiedemann: Particle Accelerator Physics I (Springer, Berlin, Heidelberg 1993)Google Scholar
  6. 1.6
    A. Schoch: Theory of linear and non linear perturbations of betatron oscillations in alternating gradient synchrotrons. CERN Rpt. CERN 57-23 (1958)Google Scholar
  7. 1.7
    G. Guignard: The general theory of all sum and difference resonances in a three dimensional magnetic field in a synchrotron. CERN Rpt. CERN 76-06 (1976)Google Scholar
  8. 1.8
    S. Ohnuma: Quarter integer resonance by sextupoles. Int. Note, Fermilab TM- 448 040 (1973)Google Scholar
  9. 1.9
    E.D. Courant, M.S. Livingston, H.S. Snyder: Phys. Rev. 88, 1190 (1952)ADSCrossRefGoogle Scholar
  10. 1.10
    J. Safranek: SPEAR lattice for high brightness synchrotron radiation, Ph.D Thesis (Stanford University, Stanford 1992)Google Scholar
  11. 1.11
    B. Chirikov: A universal instability of many-dimensional oscillator systems. Phys. Repts. 52, 263 (1979)MathSciNetADSCrossRefGoogle Scholar
  12. 1.12
    Nonlinear Dynamics Aspects in Particle Accelerators. Lect. Notes Phys., Vol.247 (Springer, Berlin, Heidelberg 1986)Google Scholar
  13. 1.13
    Physics of Particle Accelerators, AIP Conf. Proc., Vol.184 (American Institute of Physics, New York 1989)Google Scholar
  14. 1.14
    J.M. Greene: A method for determining a stochastic transition. J. Math. Phys. 20, 1183 (1979)ADSCrossRefGoogle Scholar
  15. 1.15
    Nonlinear Dynamics and the Beam-Beam Interaction, ed. by M. Month, J.C. Herrera. AIP Conf. Proc., Vol.57 (American Institute of Physics, New York 1979)Google Scholar
  16. 1.16
    Phase Space DynamicsLect. Notes Phys., Vol.296 (Springer, Berlin, Heidelberg 1988)Google Scholar
  17. 1.17
    E.D. Courant, H.S. Snyder: Theory of the alternating-gradient synchrotron. Annals Phys. 3, 1 (1958)ADSzbMATHCrossRefGoogle Scholar
  18. 1.18
    H. Poincaré: Nouvelle Méthods de la Mécanique Celeste (Gauthier-Villars, Paris 1892) Vol.1, p. 193Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Helmut Wiedemann
    • 1
  1. 1.Applied Physics Department and Synchrotron Radiation LaboratoryStanford UniversityStanfordUSA

Personalised recommendations