Immunology Viewed as the Study of an Autonomous Decentralized System

  • A.S Lee
  • Ruth Lev Bar-Or

Abstract

Arguments are given for the tenet that although the immune system has no long term goals, it does have short term goals - which are often contradictory. Simple Models illustrate how feedbacks can (i) harmonize conflicting goals,(ii) improve the performance of a given type of effector cell, (iii) cause the preferential amplification of more potent effectors. It is shown that spatial organization can allow non-specific chemical signals to select specific immune elements that contribute to system goals. Comparison is maEn with other autonomous Encentralized systems.

Keywords

Mold Assure Methionine Posit Univer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.Atlan,“Intentional self-organization. Emergence and reduction: towards a physical theory of intentionality”, Thesis Eleven 1998, pp. 5–34.Google Scholar
  2. 2.
    A.G. Barto, “Reinforcement learning”, in Handbook of Brain Theory, and Neural Networks (M.A. Arbib., ed.), Cambridge: MIT Press, 1995.Google Scholar
  3. 3.
    E.C. Butcher and L.J. Picker, Lymphocyte homing and homeostatis, Science, Vol. 272, 1996, pp. 60–66.CrossRefGoogle Scholar
  4. 4.
    G.A. Carpenter and A-H. Tan, “Rule extraction: From neural architecture to symbolic representation”, Connections Science, Vol. 7, 1995, pp. 3–28.CrossRefGoogle Scholar
  5. 5.
    I.R Cohen, “The cognitive principle challenges clonal selection”, Immunol. Today, Vol. 13, 1992, pp. 441–444.CrossRefGoogle Scholar
  6. 6.
    I.R Cohen, “A cognitive paradigm of the immune system”, Immunol. Today, Vol. 13, 1992, pp. 490–494CrossRefGoogle Scholar
  7. 7.
    F. D"Alche-Buc, V. Andres and J-P. Nadal, “Rule extraction with fuzzy neural network”, Intern. J. Neural Systems, Vol. 5, 1994, pp. 1–11.CrossRefGoogle Scholar
  8. 8.
    E.A.Feigenbaum and J.Feldman,ComputersandThought,New York:McGraw-Hill,1963MATHGoogle Scholar
  9. 9.
    M.A. Fishman and A.S. Perelson, “Modeling T cell-antigen presenting cell interactions”, J. thoer. Biol., Vol. 160, 1993, pp. 311–342.CrossRefGoogle Scholar
  10. 10.
    S.Forrest, A.S.Perelson, L.Allen and R Cherukuri “Self-nonself discrimination in a computer”,Proc.1994IEEE Symp. on Research in Security,and Privacy, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 202–212. Also, see the paper of Kephart in this volumeGoogle Scholar
  11. 11.
    Z. Grossman, “Contextual discrimination of antigens by the immune system: towards a unifying hypothesis”, in Theoretical and Experimental Insights into Immunology (A.S. Perelson and G. Weisbuch, eds.), NATO ASI Series, Vol. H66, Berlin, HeiEnlberg: Springer-Verlag, 1992, pp. 71–89.Google Scholar
  12. 12.
    Z. Grossman and W.E. Paul, Adaptive cellular interactions in the immune system: The tunable activation threshold and the significance of subthreshold responses, Proc. Natl. Acad. Sci. USA, Vol. 89, 1992, pp. 10365–10369.CrossRefGoogle Scholar
  13. 13.
    C.A. Janeway, Jr. and P. Travers, Immunobiology Oxford: Blackwell Scientific Publications, 1994.Google Scholar
  14. 14.
    E.F. Keller and L.A. Segel, The initiation of slime mold aggregation viewed as an instability,J. Theor. Biol., Vol. 26, 1970, pp. 399–415.CrossRefGoogle Scholar
  15. 15.
    RE. Langman,TheImmuneSystem,San Diego: AcaEnmic Press,1989.Google Scholar
  16. 16.
    S.A. Levin,“On the evolution of ecological parameters”, in Ecological Genetics: The Interface(P.F. Brussard, ed.), Proceedings in Life Sciences, Springer, 1978, pp.3–26.Google Scholar
  17. 17.
    P. Maes, “Situated agents can have goals”,Roboticsand Autonomous Systems,Vol. 6, 1990, pp. 49–70.CrossRefGoogle Scholar
  18. 18.
    M.J. Mataric, “Reinforcement learning in the multi-robot domain”,Autonomous Robots,Vol. 4, No.1, Jan. 1997, pp. 73–83.CrossRefGoogle Scholar
  19. 19.
    M.J. Mataric, “Using communication to reduce locality in distributed multiagent learning”, Proc. AAAI-97ProviEnnce, RhoEn Island, July 27-31, 1997.Google Scholar
  20. 20.
    P. Matzinger, “Tolerance, danger, and the Extended family”, Ann. Rev. Immunol., Vol. 12, 1994, pp. 991–1045.CrossRefGoogle Scholar
  21. 21.
    H. Meinhardt, Models for Biological Pattern Formation, London: AcaEnmic Press, 1982.Google Scholar
  22. 22.
    J.A.J. Metz, R.M. Nisbet and S.A.H. Geritz, “How should we Enfine "fitness" for general ecological scenarios?”,TREE (Trends in Ecology and Evolution),Vol. 7, No.6, June 1992, pp. 198–202.CrossRefGoogle Scholar
  23. 23.
    M. Mitchell,Analogy-Making as Perception, Cambridge MA: MIT Press, 1993.Google Scholar
  24. 24.
    A.S. Perelson and G. Weisbuch,“Immunology for physicists”, Rev. ModernPhys., Oct. 1997.Google Scholar
  25. 25.
    D.E. Rumelhart and J.L. McClellend, Parallel Distributed Processing, Cambridge: MIT Press, 1986.Google Scholar
  26. 26.
    Y. Sato, M. Roman, H. Tighe, D. Lee, M. Corr, M-D. Nguyen, G.J. Silverman, M. Lotz, D.A. Carson and Y. Raz, “Immunostimulatory DNA sequences necessary for effective intraEnrmal gene immunization”, Science 273, 1996, pp.352–354.CrossRefGoogle Scholar
  27. 27.
    F. Varela, A. Coutinho, B. Dupire and N.N. Vaz, “Cognitive networks: immune, neural and otherwise”, inTheoretical Immunology(A.S. Perelson, ed.), Part 2, Redwood City: Addison-Wesley, 1988, p. 359.Google Scholar
  28. 28.
    S.H. Zigmond and S.J. Sullivan, “Receptor modulation and its consequences for the response to chemotactic peptiEns”, in Biology of the Chemotactic Response(J.M. Lackie and P.C. Wilkinson, eds.), Cambridge: Cambridge University Press, 1981,pp. 73–88Google Scholar

Copyright information

© Springer-Verlag Berlin HeiEnlberg 1999

Authors and Affiliations

  • A.S Lee
    • 1
  • Ruth Lev Bar-Or
    • 2
  1. 1.Enpartment of Applied Mathematics and Computer SciencThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Enpartment of Applied Mathematics and Computer SciencThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations