Advertisement

Typical Integrals of Catastrophe Theory

  • Yu. A. Kravtsov
  • Yu. I. Orlov
Part of the Springer Series on Wave Phenomena book series (SSWAV, volume 15)

Abstract

This chapter is devoted to standard integrals associated with typical caustics. We present the simplest integrals corresponding to the seven Thom’s catastrophes and also some more complex integrals associated with caustics that occur in series. A novel point in this exposition is the one of Fresnel’s criteria for passing over from some normal forms to others when external parameters vary.

Keywords

Phase Function Focal Spot Airy Function Catastrophe Theory Fresnel Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1
    V.I. Arnold, A.N. Varchenko, S.M. Gussein-Zade. Singularities of Dijferentiable Mappings, Vols. 1, 2 (Birkhäuser, Boston 1985, 1988)CrossRefGoogle Scholar
  2. 4.2
    J.J Dustermaat: Commun. Pure Appl. Math. 27, 207 (1974)CrossRefGoogle Scholar
  3. 4.3
    M.V. Berry: J. Phys. A 10, 2061 (1977)MathSciNetADSCrossRefGoogle Scholar
  4. 4.4
    M.V. Berry, C. Upstill: Progress in Optics 18, 257–320 (North-Holland, Amsterdam 1980)Google Scholar
  5. 4.5
    Yu.A. Kravtsov, Yu.I. Orlov: Geometrical Optics of Inhomogeneous Media, Springer Ser. Wave Phenom., Vol. 6 (Springer, Berlin, Heidelberg 1990)Google Scholar
  6. 4.6
    Yu.A. Kravtsov, Yu.I. Orlov: Sov. Phys. - Usp. 26, 1038 (1983)MathSciNetADSCrossRefGoogle Scholar
  7. 4.7
    Yu.A. Kravtsov: Rays and caustics as physical objects. Progress in Optics 26, 227–348 (North-Holland, Amsterdam 1988)Google Scholar
  8. 4.8
    V.I. Arnold: Funkts. Anal. Prilozh. 6, 61 (1972)Google Scholar
  9. 4.9
    M.V. Fedoryuk: Metod Perevala (saddle-point method) (Nauka, Moscow 1977)MATHGoogle Scholar
  10. 4.10
    R.B. Dingle: Asymptotic Expansions: Their Derivation and Interpretation (Academic, London 1973)MATHGoogle Scholar
  11. 4.11
    A.A. Asatryan, Yu.A. Kravtsov: Wave Motion 10, 45 (1988)CrossRefGoogle Scholar
  12. 4.12
    J.C.P. Miller: The Airy Integral Giving Tables of Solution of the Differential Equation y″ = xy (Cambridge Univ. Press, Cambridge 1971)Google Scholar
  13. 4.13
    V.A. Fock: Electromagnetic Diffraction and Propagation Problems (Pergamon, New York 1965)Google Scholar
  14. 4.14
    M. Abramovitz, J.A. Stegun: Handbook of Mathematical Functions (NBS, Washington, DC 1964)Google Scholar
  15. 4.15
    R.E. Langer: Trans. Am. Math. Soc. 31, 23 (1931)CrossRefGoogle Scholar
  16. 4.16
    T.M. Cherry: Trans. Am. Math. Soc. 68, 224 (1950)MathSciNetMATHCrossRefGoogle Scholar
  17. 4.17
    A.A. Dorodnitsyn: Usp. Mat. Nauk 7, 3 (1952)Google Scholar
  18. 4.18
    V.Ya. Groshev, Yu.A. Kravtsov: Izv. VUZ Radiofiz. 11, 1812 (1968) [English transl.: Radiophys. Quantum Electron. 11, 1019 (1968)]Google Scholar
  19. 4.19
    T. Pearsey: Philos. Mag. 37, 311 (1946)MathSciNetGoogle Scholar
  20. 4.20
    L.M. Brekhovskikh, O.A. Godin: Acoustics of Layered Media I, II, Springer Ser. Wave Phenom., Vols. 5, 10 (Springer, Berlin, Heidelberg 1990, 1992)Google Scholar
  21. 4.21
    A.S. Kryukovskii, D.S. Lukin, E.A. Palkin: Spetsialnye Funktsii Volnovykh Katastrof (special functions of wave catastrophes). Institute of Radio Engineering and Electronics AN SSSR, preprint No. 43 (415) (IRE AN SSSR, Moscow 1984)Google Scholar
  22. 4.22
    J.N.L. Connor, D. Farrelly: J. Chem. Phys. 75, 2831 (1981)MathSciNetADSCrossRefGoogle Scholar
  23. 4.23
    J.N.L. Connor, P.R. Curtis: J.. Phys. A 15, 1179 (1982)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 4.24
    Yu.A. Kravtsov, Yu.A. Orlov: Sov. Phys. - Usp. 23, 750 (1980); Radio. Sci. 16, 975 (1981)Google Scholar
  25. 4.25
    D. Ludwig: Commun. Pure Appl. Math. 19, 215 (1966)MathSciNetMATHCrossRefGoogle Scholar
  26. 4.26
    H. Trinkaus, F. Drepper: J. Phys. A 10, L11 (1977)ADSCrossRefGoogle Scholar
  27. 4.27
    N.F. Dronov, E.B. Ipatov, D.S. Lukin, E.A. Palkin: In Rasprostranenie Radiovoln v Ionosfere (radiowave propagation in the ionosphere) (ISMIRAN, Moscow 1978) p. 57Google Scholar
  28. 4.28
    M.V. Berry, J.F. Nye, F.J. Wright: Philos. Trans. Roy. Soc. London 291, 453 (1979)ADSCrossRefGoogle Scholar
  29. 4.29
    D.S. Lukin, E.A. Palkin: Chislennyi KanonicheskiiMetod v Zadachakh Difraktsii i Rasprostranenia Elektromcignitnykh Voln v Neodnorodnykh Sredakh (numerical canonic method in problems of diffraction and propagation of electromagnetic waves in inhomogeneous media) (MFTI, Moscow 1982) p. 159.Google Scholar
  30. 4.30
    J.N.L. Connor, P.R. Curtis, D. Farrelly: J. Phys. A 17, 283 (1984)MathSciNetADSCrossRefGoogle Scholar
  31. 4.31
    V.I. Arnold: Usp. Mat. Nauk 28, 17 (1973)Google Scholar
  32. 4.32
    J.N.L. Connor: Mol. Phys. 26, 1371 (1973)ADSCrossRefGoogle Scholar
  33. 4.33
    J.N.L. Connor: Faraday Discuss. Chem. Soc. 55, 51 (1973)CrossRefGoogle Scholar
  34. 4.34
    J.N.L. Connor, D. Farrelly: Chem. Phys. Lett. 81, 306 (1981)MathSciNetADSCrossRefGoogle Scholar
  35. 4.35
    R. Gilmore: Catastrophe Theory for Scientists and Engineers (Wiley, New York 1981)MATHGoogle Scholar
  36. 4.36
    D.S. Lukin, E.B.Ipatov, E.A. Palkin: In Voprosy difraktsii elektromagnitnykh voln (problems of electromagnetic waves diffraction) (MFTI, Moscow 1982) p. 21Google Scholar
  37. 4.37
    E.B. Ipatov, D.S. Lukin, E.A. Palkin: Zhurn. Vychislit. Matematiki i Matematich. Fiziki 25, 224 (1985)MathSciNetADSMATHGoogle Scholar
  38. 4.38
    E.B. Ipatov, A.S. Kryukovskii, D.S. Lukin, D. V. Rastyagaev: In The 15th Triennal International Symposium on Electromagnetic Theory (URSI, St. Petersburg 1985) p. 419Google Scholar
  39. 4.39
    M.V. Berry: Adv. Phys. 25, 1 (1976)ADSCrossRefGoogle Scholar
  40. 4.40
    J.N.L. Connor; P.R. Curtis, D. Farrelly: Mol. Phys. 48, 1305 (1983)MathSciNetADSCrossRefGoogle Scholar
  41. 4.41
    A.S. Kryukovskii, D.S. Lukin, E.A. Palkin: Kraevye i Uglovye Katastofy v Zadazhakh Difraktsii i Rasprostranenia Voln (the edge and corner catstrophes in problems of wave diffraction and propagation) (Kazanskii Aviatsionnyi Institut, Kazan 1988)Google Scholar
  42. 4.42
    A.S. Kryukovskii: In Difraktsia i Rasprostranenie Electromagnitnykh i Akusticheskikh Voln (diffraction and propagation of electromagnetic and acoustics waves) (MFTI, Moscow 1992, p. 29)Google Scholar
  43. 4.43
    A.S. Kryukovskii, D. S. Lukin, E.A. Palkin: Doklady RAN 341, 456 (1995)MathSciNetGoogle Scholar
  44. 4.44
    A.S. Kryukovskii, D. V. Rastyagaev: In Problemy rasprostranenia i Difraktsii Electromagnitnykh Voln (problems of electromagnetic waves propagation and diffraction) (MFTI, Moscow 1995) p. 54Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Yu. A. Kravtsov
    • 1
  • Yu. I. Orlov
    • 2
  1. 1.Space Research InstituteRussian Academy of ScienceMoscowRussia
  2. 2.Power Engineering InstituteMoscowRussia

Personalised recommendations