Magnetic Resonance Imaging: Physical Principles to Advanced Applications

  • E. F. Jackson


The soft tissue contrast provided by magnetic resonance imaging (MRI) frequently makes it the modality of choice in oncological imaging. The excellent sensitivity of MRI for detecting lesions is due to the dependence of the image contrast and signal-to-noise ratio (SNR) on a wide range of both intrinsic and extrinsic parameters. Intrinsic parameters, which depend on the individual tissue characteristics, include the spin-lattice relaxation time (T1), spin-spin relaxation time (T2), proton density, and the velocity and local chemical environment of the nuclei of interest. Extrinsic parameters that affect image contrast and SNR are those chosen by the person performing the examination. A partial list of such extrinsic parameters includes the particular type of image acquisition sequence, the echo time (TE), repetition time (TR), field-of-view, slice thickness, acquisition bandwidth, various saturation and inversion pulses, and resolution. By appropriate manipulation of the extrinsic parameters, an incredibly wide range of image contrasts can be obtained and can be tailored to provide excellent visualization of anatomy, pathology, and, in some cases, function.


Magn Reson Image Functional Magnetic Resonance Imaging Fast Spin Echo Magnetic Resonance Mammography Magnetic Resonance Contrast Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weisskoff RM, Edelman RR (1996) Basic principles of MRI. In: Edelman RR, Hesselink JR, Zlatkin MB (eds) Clinical magnetic resonance imaging. Saunders, Philadelphia, pp 3–51Google Scholar
  2. 2.
    Sanders JA (1995) Magnetic resonance imaging. In: Orrison WWJ, Lewine JD, Sanders JA, Hartshorne MF (eds) Functional brain imaging. Mosby, St Louis, pp 145–186Google Scholar
  3. 3.
    Wehrli FW, Haacke EM (1993) Principles of MR imaging. In: Potchen EJ, Haacke EM, Siebert JE, Gottschalk A (eds) Magnetic resonance angiography. Mosby, St. Louis, pp 9–34Google Scholar
  4. 4.
    Wehrli FW (1992) Principles of magnetic resonance. In: Stark DD, Bradley WG (eds) Magnetic resonance imaging. Mosby Year Book, St Louis, pp 3–20Google Scholar
  5. 5.
    Wood ML (1992) Fourier imaging. In: Stark DD, Bradley WG (eds) Magnetic resonance imaging. Mosby Year Book, St. Louis, pp 21–66Google Scholar
  6. 6.
    Elster AD (1994) Questions and answers in magnetic resonance imaging. Mosby, St LouisGoogle Scholar
  7. 7.
    Matwiyoff NA (1992) Instrumentation. In: Stark DD, Bradley WG (eds) Magnetic resonance imaging. Mosby Year Book, St. Louis, pp 67–87Google Scholar
  8. 8.
    Watson AD, Rocklage SM, Carvlin MJ (1992) Contrast agents. In: Stark DD, Bradley WG (eds) Magnetic resonance imaging. Mosby Year Book, St. Louis, pp 372–437Google Scholar
  9. 9.
    Lauffer RB (1996) MRI contrast agents: basic principles. In: Edelman RR, Hesselink JR, Zlatkin MB (eds) Clinical magnetic resonance imaging. Saunders, Philadelphia, pp 177–191Google Scholar
  10. 10.
    Wood ML, Bronskill MJ, Mulkern RV, Santyr GE (1994) Physical MR desktop data. J Magn Reson Imaging 3S:19–26Google Scholar
  11. 11.
    Wehrli FW (1991) Fast-scan magnetic resonance. Principles and applications. Raven, New YorkGoogle Scholar
  12. 12.
    Chappell PM, Pelc NJ, Foo TKF, Glover GH, Haros SP, Enzmann DR (1994) Comparison of lesion enhancement on spin-echo and gradient-echo images. Am J Neuroradiol 15:37–44PubMedGoogle Scholar
  13. 13.
    Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833PubMedGoogle Scholar
  14. 14.
    Yamashita Y, Abe Y, Tang Y, Urata J, Sumi S, Takahashi M (1997) In vivo and clinical studies of image acquisition in breath-hold MR cholangiopancreatography: single-shot projection techniques versus multislice technique. AJR Am J Roentgenol 168:1449–1454PubMedGoogle Scholar
  15. 15.
    Barish M, Soto J, Yucel E (1996) Magnetic resonance cholangiopancreatography of the biliary ducts: techniques, clinical applications, and limitations. Top Magn Reson Imaging 8:302–311PubMedGoogle Scholar
  16. 16.
    Miyazaki T, Yamashita Y, Tsuchigame T, Yamaoto H, Urata J, Takahashi M (1996) MR cholangiopancreatography using HASTE (half-Fourier acquisition single-shot turbo spin-echo) sequences. AJR Am J Roentgenol 166:1297–1303PubMedGoogle Scholar
  17. 17.
    Constable RT, Gore JC (1992) The loss of small objects in variable TE imaging: implications for FSE, RARE, and EPI. Magn Reson Med 28:9–24PubMedGoogle Scholar
  18. 18.
    Constable RT, Anderson AW, Zhong J, Gore JC (1992) Factors influencing contrast in fast spin-echo MR imaging. Magn Reson Imaging 10:497–511PubMedGoogle Scholar
  19. 19.
    Atlas SW, Hackney DB, Listerud J (1993) Fast spin-echo imaging of the brain and spine. Magn Reson Q 9:61–83PubMedGoogle Scholar
  20. 20.
    Constable RT, Smith RC, Gore JC (1992) Signal-to-noise and contrast in fast spin echo (FSE) and inversion recovery FSE imaging. J Comput Assist Tomogr 16:41–47PubMedGoogle Scholar
  21. 21.
    Henkelman RM, Hardy PA, Bishop JE, Poon CS, Plewes DB (1992) Why fat is bright in RARE and fast spin-echo imaging. J Magn Reson Imaging 2:533–540PubMedGoogle Scholar
  22. 22.
    Norbash AM, Glover GH, Enzmann DR (1992) Intracerebral lesion contrast with spin-echo and fast spin-echo pulse sequences. Radiology 185:661–665PubMedGoogle Scholar
  23. 23.
    Edelman RR, Wielopolski PA (1996) Fast MRI. In: Edelman RR, Hesselink JR, Zlatkin MB (eds) Clinical magnetic resonance imaging. Saunders, Philadelphia, pp 302–352Google Scholar
  24. 24.
    Potchen EJ, Haacke EM, Siebert JE, Gottschalk A (1993) Magnetic resonance angiography. Mosby, St LouisGoogle Scholar
  25. 25.
    Chien D, Anderson CM, Lee RE (1996) MR angiography: basic principles. In: Edelman RR, Hesselink JR, Zlatkin MB (eds) Clinical magnetic resonance imaging. Saunders, Philadelphia, pp 271–301Google Scholar
  26. 26.
    Prince MR, Grist TM, Debatin JF (1997) 3D contrast MR angiography. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  27. 27.
    Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194PubMedGoogle Scholar
  28. 28.
    DeCoene B, Hajnal JV, Gatehouse P (1992) MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 13:1555–1564Google Scholar
  29. 29.
    Hajnal JV, DeCoene B, Lewis PD (1992) High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr 16:506–513PubMedGoogle Scholar
  30. 30.
    Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144PubMedGoogle Scholar
  31. 31.
    Wolff SD, Eng J, Balaban RS (1991) Magnetization transfer contrast: Method for improving contrast in gradient-recalled-echo images. Radiology 179:133–137PubMedGoogle Scholar
  32. 32.
    Wolff SD, Balaban RS (1994) Magnetization transfer imaging: practical aspects and clinical applications. Radiology 192:593–599PubMedGoogle Scholar
  33. 33.
    Balaban RS, Ceckler TL (1992) Magnetization transfer contrast in magnetic resonance imaging. Magn Reson Q 8:116–137PubMedGoogle Scholar
  34. 34.
    Hiehle JF, Grossman RI, Ramer KN, Gonzalez-Scarano F, Cohen JA (1995) Magnetization transfer effects in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and nonenhanced T1-weighted images. AJNR Am J Neuroradiol 16:69–77PubMedGoogle Scholar
  35. 35.
    Mehta RC, Pike GB, Haros SP, Enzmann DR (1995) Central nervous system tumor, infection, and infarction: detection with gadolinium-enhanced magnetization transfer MR imaging. Radiology 195:41–46PubMedGoogle Scholar
  36. 36.
    Boorstein JM, Wong KT, Grossman RI, Bolinger L, McGowan JC (1994) Metastatic lesions of the brain: imaging with magnetization transfer. Radiology 191: 799–803PubMedGoogle Scholar
  37. 37.
    Elster AD, King JC, Mathews VP, Hamilton CA (1994) Cranial tissues: appearance at gadolinium-enhanced and nonenhanced MR imaging with magnetization transfer contrast. Radiology 190:541–546PubMedGoogle Scholar
  38. 38.
    Finelli DA, Hurst GC, Gullapali RP, Bellon EM (1994) Improved contrast of enhancing brain lesions on post-gadolinium, T1-weighted spin-echo images with use of magnetization transfer. Radiology 190:553–559PubMedGoogle Scholar
  39. 39.
    Lin W, Tkach JA, Haacke EM, Masaryk TJ (1993) Intracranial MR angiography: application of magnetization transfer contrast and fat saturation to short gradient-echo velocity-compensated sequences. Radiology 186:753–761PubMedGoogle Scholar
  40. 40.
    Edelman RR, Ahn SS, Chien D et al. (1992) Improved time-of-flight MR angiography of the brain with magnetization transfer contrast. Radiology 184:395–399PubMedGoogle Scholar
  41. 41.
    Pike GB, Hu BS, Glover GH, Enzmann DR (1992) Magnetization transfer time-of-flight magnetic resonance angiography. Magn Reson Med 25:372–379PubMedGoogle Scholar
  42. 42.
    Yousem DM, Montone KT, Sheppard LM, Rao VM, Weinstein GS, Hayden RE (1994) Head and neck neoplasms: magnetization transfer analysis. Radiology 192:703–707PubMedGoogle Scholar
  43. 43.
    Sorenson AG, Rosen BR (1996) Functional MRI of the Brain. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine. Lippincott-Raven, Philadelphia, pp 1501–1545Google Scholar
  44. 44.
    Le Bihan D, Turner R, Moonen CTW, Pekar J (1991) Imaging of diffusion and microcirculation with gradient sensitization: design, strategy, and significance. J Magn Reson Imaging 1:7–28PubMedGoogle Scholar
  45. 45.
    Le Bihan D, Turner R (1993) Diffusion and perfusion nuclear magnetic resonance imaging. In: Potchen EJ, Haacke EM, Siebert JE, Gottschalk A (eds) Magnetic resonance angiography. Concepts and applications. Mosby-Year Book, Inc, St Louis, pp 323–342Google Scholar
  46. 46.
    Le Bihan D (1993) Clinical intravoxel incoherent motion imaging. In: Potchen EJ, Haacke EM, Siebert JE, Gottschalk A (eds) Magnetic resonance angiography. Concepts and applications. Mosby-Year Book, Inc, St Louis, pp 485–497Google Scholar
  47. 47.
    Le Bihan D, Turner R, Douek P, Patronas N (1992) Diffusion MR imaging: clinical applications. AJR Am J Roentgenol 159:591–599PubMedGoogle Scholar
  48. 48.
    Rosen BR, Aronen HJ, Cohen MS et al. (1993) Diffusion and perfusion fast scanning in brain tumors. In: Leeds NE (ed) Brain tumors. Saunders, Philadelphia, pp 631–648Google Scholar
  49. 49.
    Le Bihan D (1992) Theoretical principles of perfusion imaging. Application to magnetic resonance imaging. Invest Radiol 27:S6–S11PubMedGoogle Scholar
  50. 50.
    Sanders JA, Orrison WWJ (1995) Functional magnetic resonance imaging. In: Orrison WWJ, Lewine JD, Sanders JA, Hartshorne MF (eds) Functional brain imaging. Mosby-Year Book, Inc, St Louis, pp 239–326Google Scholar
  51. 51.
    Moseley ME, Cohen Y, Kucharczyk J et al. (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176:439–445PubMedGoogle Scholar
  52. 52.
    van Gelderen P, de Vleeschouwer MHM, Pekar J, van Zijl PCM, DesPres D, Moonen CTW (1993) Diffusion MRI and acute stroke detection: the use of the trace of the diffusion tensor. Book of abstracts, 12th Annual Meeting of the Society of Magnetic Resonance in Medicine, New York:592Google Scholar
  53. 53.
    Conturo T, McKinsrty R, Aronovitz J, Neil J (1995) Diffusion MRI: precision, accuracy, and flow effects. NMR Biomed 8:307–332PubMedGoogle Scholar
  54. 54.
    Delannoy J, Chen C-N, Turner R, Levin RL, Le Bihan D (1991) Noninvasive temperature imaging using diffusion MRI. Magn Reson Med 19:333–339PubMedGoogle Scholar
  55. 55.
    Samulski TV, MacFall J, Zhang Y, Grant W, Charles C (1992) Non-invasive thermometry using magnetic resonance diffusion imaging: potential for application in hyperthermic oncology. Int J Hyperthermia 8:819–829PubMedGoogle Scholar
  56. 56.
    Zhang Y, Samulski TV, Joines WT, Mattiello J, Levin RL, Le Bihan D (1992) On the accuracy on noninvasive thermometry using molecular diffusion magnetic resonance imaging. Int J Hyperthermia 8:263–274PubMedGoogle Scholar
  57. 57.
    Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265PubMedGoogle Scholar
  58. 58.
    Aronen HJ, Gazit IE, Louis DN et al. (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51PubMedGoogle Scholar
  59. 59.
    Aronen HJ, Glass J, Pardo FS et al. (1995) Echo-planar MR cerebral blood volume mapping of gliomas. Clinical utility. Acta Radiologica 36:520–528PubMedGoogle Scholar
  60. 60.
    Aronen HJ, Cohen MS, Belliveau JW, Fordham JA, Rosen BR (1993) Ultrafast imaging of brain tumors. Top Magn Reson Imaging 5:14–24PubMedGoogle Scholar
  61. 61.
    Kuhl C, Bieling H, Gieseke J et al. (1997) Breast neoplasms: T2* susceptibility-contrast, first-pass perfusion MR imaging. Radiology 202:87–95PubMedGoogle Scholar
  62. 62.
    Tacke J, Adam G, Classen H, Muhler A, Prescher A, Gunther R (1997) Dynamic MRI of a hypocascularized liver tumor model: comparison of a new blood pool contrast agent (24-gadolinium-DTPA-cascade-polymer) with gadopentetate dimeglumine. J Magn Reson Imaging 7:678–682PubMedGoogle Scholar
  63. 63.
    Roberts H, Saeed M, Roberts T et al. (1997) Comparison of albumin-(Gd-DTPA)30 and Gd-DTPA-24-cas-cade-polymer for measurements of normal and abnormal microvascular permeability. J Magn Reson Imaging 7:331–338PubMedGoogle Scholar
  64. 64.
    Su M-Y, Najafi AA, Nalcioglu O (1995) Regional comparison of tumor vascularity and permeability parameters measured by albumin-Gd-DTPA and Gd-DTPA. Magn Reson Med 34:402–411PubMedGoogle Scholar
  65. 65.
    Adam G, Muhler A, Spuntrup E et al. (1996) Differentiation of spontaneous canine breast tumors using dynamic magnetic resonance imaging with 24-gadolini-um-DTPA-cascade-polymer, a new blood-pool agent. Preliminary experience. Invest Radiol 31:267–274PubMedGoogle Scholar
  66. 66.
    Vexler V, Clement O, Schmitt-Willich H, Brasch R (1994) Effect of varying the molecular weight of the MR contrast agent Gd-DTPA-polysine on blood pharmacokinetics and enhancement patterns. J Magn Reson Imaging 4:381–388PubMedGoogle Scholar
  67. 67.
    Shames DM, Kuwatsuru R, Vexler V, Mühler A, Brasch RC (1993) Measurement of capillary permeability to macromolecules by dynamic magnetic resonance imaging: a quantitative noninvasive technique. Magn Reson Med 29:616–622PubMedGoogle Scholar
  68. 68.
    Edelman RR, Siewert B, Darby DG et al. (1994) Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 192:513–520PubMedGoogle Scholar
  69. 69.
    Inamura T, Nomura T, Bartus RT, Black KL (1994) In-tracarotid infusion of RMP-7, a bradykinin analog: a method for selective drug delivery to tumors. J Neuro-surg 81:752–758Google Scholar
  70. 70.
    Perman WH, Heiberg EM, Grunz J, Herrmann VM, Janney CG (1994) A fast 3D-imaging technique for performing dynamic Gd-enhanced MRI of breast lesions. Magn Reson Imaging 12:545–551PubMedGoogle Scholar
  71. 71.
    Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33:564–568PubMedGoogle Scholar
  72. 72.
    Hulka CA, Smith BL, Sgroi DC et al. (1995) Benign and malignant breast lesions: differentiation with echo-planar MR imaging. Radiology 197:33–38PubMedGoogle Scholar
  73. 73.
    Buadu LD, Maurakami J, Murayama S et al. (1996) Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopatholoic findings and tumor angiogenesis. Radiology 200:639–649PubMedGoogle Scholar
  74. 74.
    Buckley DL, Kerslake RW, Blackband SJ, Horsman A (1994) Quantitative analysis of multi-slice Gd-DTPA enhanced dynamic MR images using an automated simplex minimization procedure. Magn Reson Med 32:646–651PubMedGoogle Scholar
  75. 75.
    Turkat TJ, Klein BD, Polan RL, Richman R (1994) Dynamic MR mammography: a technique for potentially reducing the biopsy rate for benign breast disease. J Magn Reson Imaging 4:563–568PubMedGoogle Scholar
  76. 76.
    Hoffmann U, Brix G, Knopp M, Heß T, Lorenz WJ (1995) Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography. Magn Reson Med 33:506–514PubMedGoogle Scholar
  77. 77.
    Sinha S, Lucas-Quesada FA, DeBruhl ND et al. (1997) Multifeature analysis of Gd-enhanced MR images of breast lesions. J Magn Reson Imaging 7:1016–1026PubMedGoogle Scholar
  78. 78.
    Nägele T, Petersen D, Klose U et al. (1993) Dynamic contrast enhancement of intracranial tumors with snapshot-FLASH MR imaging. AJNR Am J Neuroradiol 14:89–98PubMedGoogle Scholar
  79. 79.
    Gowland P, Mansfield P, Bullock P, Stehling M, Worthington B, Firth J (1992) Dynamic studies of gadolinium uptake in brain tumors using inversion-recovery echo-planar imaging. Magn Reson Med 26:241–258PubMedGoogle Scholar
  80. 80.
    Bullock PR, Mansfield P, Gowland P, Worthington BS, Firth JL (1991) Dynamic imaging of contrast enhancement in brain tumors. Magn Reson Med 19:293–298PubMedGoogle Scholar
  81. 81.
    Hazle JD, Jackson EF, Schomer DF, Leeds NE (1997) Dynamic imaging of intracranial lesions using fast spin-echo imaging: differentiation of brain tumors and treatment effects. J Magn Reson Imaging 7:1084–1093PubMedGoogle Scholar
  82. 82.
    Verstraete KL, Dierick A, De Deene Y et al. (1994) First-pass images of musculoskeletal lesions: a new and useful diagnostic application of dynamic contrast-enhanced MRI. Magn Reson Imaging 12:687–702PubMedGoogle Scholar
  83. 83.
    Mirowitz SA, Totty WG, Lee JKT (1992) Characterization of musculoskeletal masses using dynamic Gd-DTPA enhanced spin-echo MRI. J Comput Assist To-mogr 16:120–125Google Scholar
  84. 84.
    Fletcher BD, Hanna SL, Fairclough D, Gronemeyer SA (1992) Pediatric musculoskeletal tumors: use of dynamic, contrast-enhanced MR imaging to monitor response to chemotherapy. Radiology 184:243–248PubMedGoogle Scholar
  85. 85.
    Erlemann R, Peters PE (1990) Applications of dynamic Gd-DTPA MRI in the investigation of musculoskeletal neoplasms. In: Bydder G, Felix R, Bücheier E, et al. (eds) Contrast media in MRI. International workshop, Berlin. Medicom Europe, Brinklaan, pp 369–379Google Scholar
  86. 86.
    Fletcher BD, Hanna SL (1990) Musculoskeletal neoplasms: dynamic Gd-DTPA-enhanced MR imaging. Radiology 177:287–288PubMedGoogle Scholar
  87. 87.
    Erlemann R (1990) Musculoskeletal neoplasms: dynamic Gd-DTPA-enhanced MR imaging. Radiology 177:288Google Scholar
  88. 88.
    Verstraete KL, De Deene Y, Roels H, Dierick A, Uytten-daele D, Kunnen M (1994) Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging — parametric “first-pass” images depict tissue vascularization and perfusion. Radiology 192:835–843PubMedGoogle Scholar
  89. 89.
    Erlemann R, Reiser MF, Peters PE et al. (1989) Musculoskeletal neoplasms: static and dynamic Gd-DTPA-enhanced MR imaging. Radiology 171:767–773PubMedGoogle Scholar
  90. 90.
    Quillin S, Atilla S, Brown J, Borrello J, Yu C, Pilgram T (1997) Characterization of focal hepatic masses by dynamic contrast-enhanced MR imaging: findings in 311 lesions. Magn Reson Imaging 15:275–285PubMedGoogle Scholar
  91. 91.
    Kinkel K, Tardivon A, Soyer P et al. (1996) Dynamic contrast-enhanced subtraction versus T2-weighted spin-echo MR imaging in the follow-up of colorectal neoplasm: a prospective study of 41 patients. Radiology 200:453–458PubMedGoogle Scholar
  92. 92.
    Muller-Schimpfle M, Brix G, Layer G et al. (1993) Recurrent rectal cancer: diagnosis with dynamic MR imaging. Radiology 189:881–889PubMedGoogle Scholar
  93. 93.
    Jager GJ, Ruijter ETG, vd Kaa CA et al. (1997) Dynamic TurboFlash subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology 203:645–652PubMedGoogle Scholar
  94. 94.
    Wong ET, Jackson EF, Hess K et al. (1998) Correlations between dynamic MRI and outcome in patients with malignant glioma. Neurology 50:777–781PubMedGoogle Scholar
  95. 95.
    Hawighorst H, Engenhart R, Knopp M et al. (1997) Intracranial meningeomas: time-and dose-dependent effects of irradiation on tumor microcirculation monitored by dynamic MR imaging. Magn Reson Imaging 15:423–432PubMedGoogle Scholar
  96. 96.
    Ott RJ, Brada M, Flower MA, Babich JW, Cherry SR, Deehan BJ (1991) Measurements of blood-brain barrier permeability in patients undergoing radiotherapy and chemotherapy for primary cerebral lymphoma. Eur J Cancer 27:1356–1361PubMedGoogle Scholar
  97. 97.
    Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628PubMedGoogle Scholar
  98. 98.
    Mussurakis S, Buckley D, Horsman A (1997) Dynamic MRI of invasive breast cancer: assessment of three region-of-interest analysis methods. J Comput Assist Tomogr 21:431–438PubMedGoogle Scholar
  99. 99.
    den Boer J, Hoenderop R, Smink J et al. (1997) Pharmacokinetic analysis of Gd-DTPA enhancement in dynamic three-dimensional MRI of breast lesions. J Magn Reson Imaging 7:702–715Google Scholar
  100. 100.
    Mussurakis S, Buckley D, Bowsley S et al. (1995) Dynamic contrast-enhanced magnetic resonance imaging of the breast combined with pharmacokinetic analysis of gadolinium-DTPA uptake in the diagnosis of local recurrence of early stage breast carcinoma. Invest Radiol 30:650–662PubMedGoogle Scholar
  101. 101.
    Knopp M, Brix G, Junkermann H, Sinn H (1994) MR mammography with pharmacokinetic mapping for monitoring of breast cancer treatment during neoadjuvant therapy. Magn Reson Imaging 2:633–658Google Scholar
  102. 102.
    Hawighorst H, Knapstein P, Weikel W et al. (1996) Cervical carcinoma: comparison of standard and pharmacokinetic MR imaging. Radiology 201:531–539PubMedGoogle Scholar
  103. 103.
    Hawighorst H, Knapstein P, Schaeffer U et al. (1996) Pelvic lesions in patients with treated cervical carcinoma: efficacy of pharmacokinetic analysis of dynamic MR images in distinguishing recurrent tumors from benign conditions. AJR Am J Roentgenol 166:401–408PubMedGoogle Scholar
  104. 104.
    Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101PubMedGoogle Scholar
  105. 105.
    Larsson HBW, Tofts PS (1992) Measurement of blood-brain barrier permeability using dynamic Gd-DTPA scanning — a comparison of methods. Magn Reson Med 24:174–176PubMedGoogle Scholar
  106. 106.
    Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367PubMedGoogle Scholar
  107. 107.
    Larsson HBW, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131PubMedGoogle Scholar
  108. 108.
    Su M-Y, Jao J-C, Nalcioglu O (1994) Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: Studies in rat muscle tumors with dynamic Gd-DTPA enhanced MRI. Magn Reson Med 32:714–724PubMedGoogle Scholar
  109. 109.
    Kenney J, Schmiedl U, Maravilla K et al. (1992) Measurement of blood-brain barrier permeability in a tumor model using magnetic resonance imaging with gadolinium-DTPA. Magn Reson Med 27:68–75PubMedGoogle Scholar
  110. 110.
    Schmiedl UP, Kenney J, Maravilla KR (1992) Kinetics of pathologic blood-brain-barrier permeability in an astrocytic glioma using contrast-enhanced MR. AJNR Am J Neuroradiol 13:5–14PubMedGoogle Scholar
  111. 111.
    Schmiedl UP, Kenney J, Maravilla KR (1991) MRI of blood-brain barrier permeability in astrocytic gliomas: application of small and large molecular weight contrast media. Magn Reson Med 22:288–292PubMedGoogle Scholar
  112. 112.
    Su M-Y, Wang Z, Roth GM, Lao X, Samoszuk MK, Nalcioglu O (1996) Pharmacokinetic changes induced by vasomodulators in kidneys, livers, muscles, and implanted tumors in rats as measured by dynamic Gd-DTPA-enhanced MRI. Magn Reson Med 36:868–877PubMedGoogle Scholar
  113. 113.
    Schwarzbauer C, Morrissey SP, Deichmann R et al. (1997) Quantitative magnetic resonance imaging of capillary water permeability and regional blood volume with an intravascular MR contrast agent. Magn Reson Med 37:769–777PubMedGoogle Scholar
  114. 114.
    Griebel J, Mayr N, de Vries A et al. (1997) Assessment of tumor microcirculation: a new role of dynamic contrast MR imaging. J Magn Reson Imaging 7:111–119PubMedGoogle Scholar
  115. 115.
    Jackson E, Hazle J, Reeve D (1996) Dynamic contrast imaging using spin echo, fast spin echo, and fast spoiled gradient echo sequences. Book of abstracts, 4th Annual Meeting of the International Society for Magnetic Resonance in Medicine, New York, pp 1494Google Scholar
  116. 116.
    Jackson EF, Reeve DM, Hazle JD (1998) Image acquisition techniques for dynamic MR imaging of intracranial lesions. Magn Reson Imaging (in press)Google Scholar
  117. 117.
    Belliveau JW, Kennedy DN, McKinstry RC et al. (1991) Functional mapping of the human cortex by magnetic resonance imaging. Science 254:716–719PubMedGoogle Scholar
  118. 118.
    Fox P, Raichle M (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A 83:1140–1144PubMedCentralPubMedGoogle Scholar
  119. 119.
    Kwong KK (1995) Functional magnetic resonance imaging with echo planar imaging. Magn Reson Q 11:1–20PubMedGoogle Scholar
  120. 120.
    Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173PubMedGoogle Scholar
  121. 121.
    Turner R, Jezzard P, Wen H et al. (1993) Functional mapping of the human visual cortex at 4 and 1.5 Tes-la using deoxygenation contrast EPI. Magn Reson Med 29:277–279PubMedGoogle Scholar
  122. 122.
    Menon RS, Ogawa S, Kim S-G et al. (1992) Functional brain mapping using magnetic resonance imaging. Signal changes accompanying visual stimulation. Invest Radiol 27:S47–S53PubMedGoogle Scholar
  123. 123.
    Hathout GM, Kirlew KAT, So GJK et al. (1994) MR imaging signal response to sustained stimulation in human visual cortex. J Magn Reson Imaging 4:537–543PubMedGoogle Scholar
  124. 124.
    DeYoe EA, Bandettini P, Neitz J, Miller D, Winans P (1994) Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods 54: 171–187PubMedGoogle Scholar
  125. 125.
    Calvert GA, Bullmore ET, Brammer MJ et al. (1997) Activation of auditory cortex during silent lipreading. Science 276:593–596PubMedGoogle Scholar
  126. 126.
    FitzGerald DB, Cosgrove GR, Ronner S et al. (1997) Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol 18:1529–1539PubMedGoogle Scholar
  127. 127.
    Spitzer M, Kwong KK, Kennedy W, Rosen BR, Belliveau JW (1995) Category-specific brain activation in fMRI during picture naming. Neuroreport 6:2109–2112PubMedGoogle Scholar
  128. 128.
    Gabrieli JDE, Desmond JE, Demb JB et al. (1996) Functional magnetic resonance imaging of semantic memory processes in the frontal lobes. Psychol Sci 7:278–283Google Scholar
  129. 129.
    Busatto G, Howard J, Ha Y et al. (1997) A functional magnetic resonance imaging study of episodic memory. Neuroreport 8:2671–2675PubMedGoogle Scholar
  130. 130.
    Ojemann JG, Buckner RL, Corbetta M, Raichle ME (1997) Imaging studies of memory and attention. Neurosurg Clin North Am 8:307–319Google Scholar
  131. 131.
    Kammer T, Bellemann ME, Guckel F et al. (1997) Functional MR imaging of the prefrontal cortex: specific activation in a working memory task. Magn Reson Imaging 15:879–889PubMedGoogle Scholar
  132. 132.
    D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378: 279–281PubMedGoogle Scholar
  133. 133.
    Demb JB, Desmond JE, Wagner AD, Vaidya CJ, Glover GH, Gabrieli JDE (1995) Semantic encoding and retrieval in the left interior prefrontal cortex: a functional MRI study of task difficulty and process specificity. J Neurosci 15:5870–5878PubMedGoogle Scholar
  134. 134.
    McCarthy G, Blamire AM, Puce A et al. (1994) Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proc Natl Acad Sci U S A 91:8690–8694PubMedCentralPubMedGoogle Scholar
  135. 135.
    Gabrieli JDE, Brewer JB, Desmond JE, Glover GH (1997) Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science 276:264–266PubMedGoogle Scholar
  136. 136.
    Courtney SM, Ungerleider LG, Kell K, Haxby JV (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386:608–611PubMedGoogle Scholar
  137. 137.
    Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC (1997) A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5:49–62PubMedGoogle Scholar
  138. 138.
    Benson RR, Logan WJ, Cosgrove GR et al. (1996) Functional MRI localization of language in a 9-year-old child. Can J Neurol Sci 23:213–219PubMedGoogle Scholar
  139. 139.
    Binder JR, Swanson SJ, Hammeke TA et al. (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46:978–984PubMedGoogle Scholar
  140. 140.
    Atlas SW, Howard RSI, Maldjian J et al. (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 38:329–338PubMedGoogle Scholar
  141. 141.
    Hertz-Pannier L, Gaillard WD, Mott SH et al. (1997) Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology 48:1003–1012PubMedGoogle Scholar
  142. 142.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMedGoogle Scholar
  143. 143.
    Righini A, de Divitiis O, Prinster A et al. (1996) Functional MRI: primary motor cortex localization in patients with brain tumors. J Comput Assist To-mogr 20:702–708Google Scholar
  144. 144.
    Rao SM, Binder JR, Bandettini PA et al. (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318PubMedGoogle Scholar
  145. 145.
    Schröder J, Wenz F, Schad LR, Baudendistel K, Knopp MV (1995) Sensorimotor cortex and supplementary motor area changes in schizophrenia. A study with functional magnetic resonance imaging. Br J Psychiatry 167:197–201PubMedGoogle Scholar
  146. 146.
    Mueller WM, Yetkin FZ, Hammeke TA et al. (1996) Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39:515–521PubMedGoogle Scholar
  147. 147.
    Hammeke TA, Yetkin FZ, Mueller WM et al. (1994) Functional magnetic resonance imaging of somatosensory stimulation. Neurosurgery 35:677–681PubMedGoogle Scholar
  148. 148.
    Maddock RJ, Buonocore MH (1997) Activation of left posterior cingulate gyrus by the auditory presentation of threat-related words: an fMRI study. Psychiatry Res 75:1–14PubMedGoogle Scholar
  149. 149.
    Breiter HC, Rauch SL (1996) Functional MRI and the study of OCD: from symptom provocation to cognitive-behavioral probes of cortico-striatal systems and the amygdala. Neuroimage 4:S127–127S138Google Scholar
  150. 150.
    Davis KD, Taylor SJ, Crawley AP, Wood ML, Mikulis DJ (1997) Functional MRI of pain-and attention-related activations in the human cingulate cortex. J Neurophysiol 77:3370–3380PubMedGoogle Scholar
  151. 151.
    Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971PubMedGoogle Scholar
  152. 152.
    Michiels J, Bosmans H, Pelgrims P et al. (1994) On the problem of geometric distortion in magnetic resonance images for stereotactic neurosurgery. Magn Reson Imaging 12:749–765PubMedGoogle Scholar
  153. 153.
    Rousseau J, Clarysse P, Blond S, Gibon D, Vasseur C, Marchandise X (1991) Validation of a new method for stereotactic localization using MR imaging. J Comput Assist Tomogr 15:291–296PubMedGoogle Scholar
  154. 154.
    Schad L, Lott S, Schmitt F, Strum V, Lorenz JW (1987) Correction of spatial distortion in MR imaging: a prerequisite for accurate sterotaxy. J Comput Assist Tomogr 11:499–505PubMedGoogle Scholar
  155. 155.
    Sumanaweera T, Glover G, Song S, Adler J, Napel S (1994) Quantifying MRI geometric distortion in tissue. Magn Reson Med 31:40–47PubMedGoogle Scholar
  156. 156.
    Sumanaweera TS, Glover GH, Binford TO, Adler JR (1993) MR susceptibility misregistration correction. IEEE Trans Med Imaging 12:251–259PubMedGoogle Scholar
  157. 157.
    Sumanaweera TS, Adler JRJ, Napel S, Glover GH (1994) Characterization of spatial distortion in magnetic resonance imaging and its implication for stereotactic surgery. Neurosurgery 35:696–704PubMedGoogle Scholar
  158. 158.
    Jolesz FA, Blumenfeld SM (1994) Interventional use of magnetic resonance imaging. Magn Reson Q 10:85–96PubMedGoogle Scholar
  159. 159.
    Lufkin RB (1995) Interventional MR imaging. Radiology 197:16–18PubMedGoogle Scholar
  160. 160.
    Cline HE, Hynynen K, Watkins RD et al. (1995) Focused US system for MR imaging-guided tumor ablation. Radiology 194:731–737PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • E. F. Jackson

There are no affiliations available

Personalised recommendations