Advertisement

Protease-Catalyzed Peptide Synthesis

Part of the Springer Lab Manual book series (SLM)

Abstract

Peptides play a fundamental role in the function of living systems. Since the demand for peptides is enormous, classical chemical synthesis in solution, solid-phase synthesis and recombinant techniques belong to the most important methods of peptide synthesis. Unfortunately, neither of these methods is completely free of drawbacks. Especially chemical synthesis of peptides often suffers from problems such as time-consuming side-chain protection/deprotection requirements, racemization and other side-reactions. Furthermore, in recombinant DNA methods, the incorporation of unnatural amino acids is limited in preparative scale. For these reasons, the use of suitable peptide ligases should provide an attractive alternative by combining the flexibility of chemical strategies with the advantages of the regio- and stereospecific enzymatic reactions (Jakubke 1987; Bongers and Heimer 1994; Jakubke 1994; Bordusa et al. 1997).

Keywords

Peptide Synthesis Acyl Donor Preparative Scale Acyl Transfer Peptide Bond Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bongers J, Lambros T, Liu W, Ahmad M, Campbell RM, Felix AM, Heimer EP (1992) Enzymatic semisynthesis of a superpotent analog of human growth hormone-releasing factor. J Med Chem 35:3934–3941PubMedCrossRefGoogle Scholar
  2. Bongers J, Heimer EP (1994) Recent applications of enzymatic peptide synthesis. Peptides 15:183–193PubMedCrossRefGoogle Scholar
  3. Bongers J, Liu W, Lambros T, Breddam K, Campbell RM, Felix AM, Heimer EP (1994) Peptide synthesis catalyzed by the Glu/Asp-specific endopeptidase. Int J Peptide Protein Res 44:123–129CrossRefGoogle Scholar
  4. Bordusa F, Ullmann D, Jakubke HD (1997) Peptide synthesis form N- to C-terminus: an advantageous strategy using protease catalysis. Angew Chem 1st Ed Engl 109:1099–1101CrossRefGoogle Scholar
  5. Eichhorn U, Bommarius AS, Drauz K, Jakubke HD (1997) Synthesis of dipeptides by suspension-to-suspension conversion via thermolysin catalysis — from analytical to preparative scale. J Pept Sci, 3:245–257PubMedCrossRefGoogle Scholar
  6. Fischer A, Bommarius AS, Drauz K, Wandrey C (1994) A novel approach to enzymatic peptide synthesis using highly solubilizing N-alpha-protecting groups of amino acids. Biocatalysis 4:289–307CrossRefGoogle Scholar
  7. Gerisch S, Jakubke HD (1997) Enzymatic peptide synthesis in frozen aqueous solution: use of Naα-unprotected peptide esters as acyl donors. J Peptide Sci, 3:93–98CrossRefGoogle Scholar
  8. Grant NH, Alburn HE (1966) Acceleration of enzyme reactions in ice. Nature 212:194PubMedCrossRefGoogle Scholar
  9. Hailing PJ, Eichhorn U, Kuhl P, Jakubke HD (1995) Thermodynamics of solid-to-solid-conversion and application to enzymic peptide synthesis. Enzyme Microb Technol 17:601–606CrossRefGoogle Scholar
  10. Jackson DY, Burnier J, Quan C, Stanley M, Tom J, Wells J A (1994) A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science 266:243–247PubMedCrossRefGoogle Scholar
  11. Jakubke HD, Däumer H, Könnecke A, Kuhl P, Fischer J (1980) Specificity in the hydrolysis of N-acyl-L-phenylalanine-4-nitroanilide by α-chymotrypsin. Experientia 36:1039–1040PubMedCrossRefGoogle Scholar
  12. Jakubke HD (1987) Enzymatic peptide synthesis. In: Udendriend S, Meienhofer J (eds) The Peptides: Analysis, Synthesis, Biology, vol 9. Academic Press, New York, pp 103–165Google Scholar
  13. Jakubke HD, Könnecke A (1987) Peptide synthesis using immobilized proteases. In: Mosbach K (ed) Immobilized enzymes and cells (Part C). Methods Enzymol, vol 136. Academic Press, London, pp 178–188CrossRefGoogle Scholar
  14. Jakubke HD (1994) Protease-catalyzed peptide synthesis: basic principles, new synthesis strategies and medium engineering. J Chin Chem Soc 41:355–370Google Scholar
  15. Jakubke HD (1995) Peptide ligases: tools for peptide synthesis. Angew Chem Int Ed Engl 34:175–177CrossRefGoogle Scholar
  16. Kemp DS (1979) Racemization in peptide synthesis. In: Gross E, Meienhofer J (eds) The Peptides: Analysis, Synthesis, Biology, vol 1. Academic Press, New York, pp 315–383Google Scholar
  17. Kuhl P, Könnecke A, Döring G, Däumer H, Jakubke HD (1980) Enzyme-catalyzed peptide synthesis in biphasic aqueous-organic systems. Tetrahedron Lett 21:893–896CrossRefGoogle Scholar
  18. Lopez-Fandino R, Gill I, Vulfson EN (1994) Enzymatic catalysis in heterogeneous mixtures of substrates: The role of the liquid phase and the effects of “adjuvants”. Biotechn Bioeng 43:1016–1023CrossRefGoogle Scholar
  19. Morihara K, Oka K (1977) Alpha-chymotrypsin as the catalyst for peptide synthesis. In: Nakajima H (ed) Peptide Chemistry 1976. Protein Research Foundation, Osaka, pp 9–16Google Scholar
  20. Pincock RE, Kiovsky TE (1966) Kinetics of reactions in frozen solutions. J Chem Educ 43:358–360CrossRefGoogle Scholar
  21. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162PubMedCrossRefGoogle Scholar
  22. Schellenberger V, Schellenberger U, Jakubke HD, Hänsicke A, Bienert M, Krause E (1990) Chymotrypsin-catalyzed fragment coupling synthesis of D-Phe6-GnRH. Tetrahedron Lett 31:7305–7306CrossRefGoogle Scholar
  23. Schellenberger V, Jakubke HD (1991) Protease-catalyzed kinetically controlled peptide synthesis. Angew Chem Int Ed Engl 30:1437–1449CrossRefGoogle Scholar
  24. Schellenberger V, Görner A, Könnecke A, Jakubke HD (1991) Protease-catalyzed peptide synthesis: Prevention of side reactions in kinetically controlled reactions. Peptide Res 4:265–269Google Scholar
  25. Schuster M, Aaviksaar A, Jakubke HD (1990) Enzyme-catalyzed peptide synthesis in ice. Tetrahedron 46:8093–8102CrossRefGoogle Scholar
  26. Schuster M, Aaviksaar A, Jakubke HD (1992) α-chymotrypsin-catalyzed (3+7) segment synthesis of the luteinizing hormone releasing hormone. Tetrahedron Lett 33:2799–2802CrossRefGoogle Scholar
  27. Svendsen I, Breddam K (1992) Isolation and amino acid sequence of a glutamic acid specific endopeptidase from Bacillus licheniformis. Eur J Biochem 204:165–171PubMedCrossRefGoogle Scholar
  28. Ullmann G, Jakubke HD (1993) Frozen aqueous systems: New efficient reaction media for enzyme-catalyzed peptide bond formation. In: Schneider CH, Eberle AN (eds) Peptides 1992. ESCOM Sci Publ, pp 36–37Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  1. 1.EVOTEC BioSystems AGHamburgGermany
  2. 2.Faculty of Biosciences, Pharmacy and Psychology, Institute of BiochemistryLeipzig UniversityLeipzigGermany

Personalised recommendations